Broadband Outdoor Radiometer Calibration Shortwave

BORCAL-SW 2023-02

Radiometer Calibration and Characterization

<u>Customer</u> Craig Webb

Organization: ARM CRF SGP Site Address: 109596 Coal Rd, Billings, OK 74630 Phone: 580-388-4053

Calibration Facility Solar Radiation Research Laboratory

> Latitude: 39.742°N Longitude: 105.180°W Elevation: 1828.8 meters AMSL Time Zone: -7.0

> > Calibration date 06/19/2023

Report Date June 20, 2023

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Broadband Outdoor Radiometer Calibration Report

Table of contents

Introduction	3
Control Instrument history plots	4
Results summary	6
Appendix 1 Instrument Details	.A1-1
Appendix 2 BORCAL Notes	A2-1

Introduction

This report compiles the calibration results from a Broadband Outdoor Radiometer Calibration (BORCAL). The work was accomplished at the Radiometer Calibration Facility shown on the front of this report. The calibration results reported here are traceable to the International System (SI) Units of Measurement.

This report includes these sections:

- Control Instruments a group of instruments included in each BORCAL event that provides a measure of process consistency.
- Results Summary a table of all instruments included in this report summarizing their calibration results and uncertainty.
- Instrument Details the calibration certificates for each instrument.
- Environmental and Sky Conditions meteorological conditions and reference irradiance during the calibration event.

BORCAL Notes or Comments

Control Instrument History

BORCAL-SW 2023-02 / Craig Webb

Control Instrument History

Results Summary

	R@45 ¹	CF@45 1	U 2	Rnet ³	
Instrument	(µV/W/m²)	(W/m²/mV)	(%)	(µV/W/m²)	Page
15286 Hukseflux SR20-T2	16.672	59.982	+1.3 / -1.5	0.18000	A1-2
15287 Hukseflux SR20-T2	16.755	59.685	+1.1 / -1.8	0.18000	A1-5
15288 Hukseflux SR20-T2	17.140	58.342	+1.3 / -2.1	0.18000	A1-8
15357 Hukseflux SR20-T2	17.051	58.649	+1.2 / -1.2	0.18000	A1-11
15360 Hukseflux SR20-T2	16.468	60.723	+1.7 / -1.7	0.18000	A1-14
15364 Hukseflux SR20-T2	17.067	58.591	+1.4 / -1.7	0.18000	A1-17
15366 Hukseflux SR20-T2	16.833	59.407	+1.2 / -2.0	0.18000	A1-20
2549 Hukseflux SR25	9.1595	109.18	+1.8 / -1.5	0.043000	A1-23
2550 Hukseflux SR25	8.7792	113.91	+1.5 / -1.7	0.043000	A1-26
31121E6 Eppley NIP	8.7770	113.93	+1.6 / -1.1	0	A1-29
31146F3 Eppley PSP	7.4713	133.85	+3.1 / -3.6	0.56000	A1-32
31147F3 Eppley PSP	7.4244	134.69	+3.2 / -4.1	0.59000	A1-35
31148F3 Eppley PSP	7.3491	136.07	+3.6 / -3.1	0.55000	A1-38
31155F3 Eppley PSP	7.6684	130.41	+2.7 / -3.2	0.54000	A1-41
31156F3 Eppley PSP	7.6425	130.85	+2.9 / -2.9	0.56000	A1-44
31157F3 Eppley PSP	7.5745	132.02	+2.7 / -3.8	0.56000	A1-47
37947E6 Eppley sNIP	8.7791	113.91	+0.94 / -0.76	0	A1-50
65089 Hukseflux DR20-A1-T2	18.666	53.573	+0.85 / -0.89	0	A1-53
65090 Hukseflux DR20-A1-T2	20.201	49.502	+0.84 / -0.96	0	A1-56
65091 Hukseflux DR20-A1-T2	19.668	50.844	+0.90 / -0.95	0	A1-59

Table 1. Results Summary

¹ CF = 1000 / R ² See certificate for valid zenith angle range Note: Environmental Conditions for BORCAL starts on page A1-62. ³ Instrument's Effective Net IR Response

Appendix 1 Instrument Details

Calibration Certificates: 3 pages for each radiometer (4 including Environmental Conditions) Environmental Conditions for BORCAL: Last Page of a Calibration Certificate. Note: This appears only once, at the end of Appendix 1.

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	Hukseflux
Model:	SR20-T2	Serial Number:	15286
Calibration Date:	6/19/2023	Due Date:	6/19/2024
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	10/01/2022	10/01/2023
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/23/2023	04/23/2024
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/23/2023	04/23/2024
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/03/2023	02/03/2025
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/03/2023	02/03/2025
Infrared Irradiance ‡	Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	03/31/2022	03/31/2027

+ Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

Calibration Results 15286 Hukseflux SR20-T2

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = $Win \sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of radiometer (K).

where, G = B * COS(Z) + D,

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

[1]

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	16.645	0.33	94.83	16.705	0.33	265.15
2	N/A	N/A	N/A	N/A	N/A	N/A	48	16.638	0.32	93.03	16.555	0.33	266.99
4	N/A	N/A	N/A	N/A	N/A	N/A	50	16.667	0.32	91.29	16.533	0.34	268.69
6	N/A	N/A	N/A	N/A	N/A	N/A	52	16.642	0.33	89.63	16.566	0.33	270.39
8	N/A	N/A	N/A	N/A	N/A	N/A	54	16.620	0.33	87.98	16.627	0.34	272.04
10	N/A	N/A	N/A	N/A	N/A	N/A	56	16.622	0.34	86.37	16.564	0.34	273.62
12	N/A	N/A	N/A	N/A	N/A	N/A	58	16.605	0.35	84.80	16.554	0.35	275.20
14	N/A	N/A	N/A	N/A	N/A	N/A	60	16.620	0.36	83.25	16.541	0.36	276.75
16	N/A	N/A	N/A	N/A	N/A	N/A	62	16.600	0.37	81.73	16.543	0.38	278.25
18	16.760	0.33	152.50	16.733	0.31	207.61	64	16.598	0.38	80.22	16.454	0.39	279.82
20	16.772	0.29	140.73	16.776	0.31	219.34	66	16.591	0.40	78.68	16.491	0.41	281.33
22	16.766	0.30	132.65	16.766	0.31	227.13	68	16.544	0.42	77.18	16.411	0.44	282.91
24	16.732	0.32	126.58	16.781	0.33	233.41	70	16.533	0.45	75.65	16.350	0.47	284.37
26	16.754	0.30	121.75	16.744	0.31	238.34	72	16.528	0.48	74.12	16.312	0.51	285.90
28	16.685	0.32	117.49	16.712	0.31	242.49	74	16.494	0.53	72.53	16.206	N/A	287.45
30	16.665	0.30	113.92	16.769	0.31	246.12	76	16.394	N/A	70.98	16.157	N/A	289.05
32	16.693	0.30	110.82	16.663	0.35	249.16	78	16.397	N/A	69.36	16.214	N/A	290.67
34	16.718	0.30	108.01	16.663	0.32	251.98	80	16.384	N/A	67.73	16.194	N/A	292.30
36	16.692	0.30	105.31	16.679	0.30	254.70	82	16.356	N/A	66.03	16.016	N/A	293.90
38	16.698	0.30	102.99	16.682	0.31	257.04	84	N/A	N/A	N/A	N/A	N/A	N/A
40	16.663	0.32	100.72	16.651	0.31	259.23	86	N/A	N/A	N/A	N/A	N/A	N/A
42	16.667	0.31	98.67	16.633	0.31	261.37	88	N/A	N/A	N/A	N/A	N/A	N/A
44	16.647	0.31	96.71	16.676	0.31	263.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.53
Type-A Interpolating Function, u(int) (%)	±0.30
Combined Standard Uncertainty, $u(c)$ (%)	±0.61
Effective degrees of freedom, DF(c)	18292
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.2
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4.	Calibration	Label	Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
16.672	0.18000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.71
Offset Uncertainty, U(off) (%)	+0.58 / -0.83
Expanded Uncertainty, U (%)	+1.3 / -1.5
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	Hukseflux
Model:	SR20-T2	Serial Number:	15287
Calibration Date:	6/19/2023	Due Date:	6/19/2024
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	10/01/2022	10/01/2023
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/23/2023	04/23/2024
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/23/2023	04/23/2024
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/03/2023	02/03/2025
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/03/2023	02/03/2025
Infrared Irradiance ‡	Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	03/31/2022	03/31/2027

+ Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

Calibration Results 15287 Hukseflux SR20-T2

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of radiometer (K).

- $10, 0 = 0 \cos(2) + 0,$
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

[1]

Figure 2. Responsivity vs Local Standard Time

Table 2.	Instrument Responsivity	(R) and Calibration	Type-B Standard Un	certainty, u(B)
10010 2.	mouramont recoponentity	(ity and eanoration	i i jpo b otaniaara on	Jon canney, a(D)

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	16.660	0.33	94.83	16.788	0.33	265.15
2	N/A	N/A	N/A	N/A	N/A	N/A	48	16.601	0.32	93.03	16.642	0.33	266.99
4	N/A	N/A	N/A	N/A	N/A	N/A	50	16.634	0.32	91.29	16.622	0.34	268.69
6	N/A	N/A	N/A	N/A	N/A	N/A	52	16.600	0.33	89.63	16.670	0.33	270.39
8	N/A	N/A	N/A	N/A	N/A	N/A	54	16.587	0.33	87.98	16.751	0.34	272.04
10	N/A	N/A	N/A	N/A	N/A	N/A	56	16.583	0.34	86.37	16.670	0.34	273.62
12	N/A	N/A	N/A	N/A	N/A	N/A	58	16.564	0.35	84.80	16.654	0.35	275.20
14	N/A	N/A	N/A	N/A	N/A	N/A	60	16.588	0.36	83.25	16.636	0.36	276.75
16	N/A	N/A	N/A	N/A	N/A	N/A	62	16.565	0.37	81.73	16.651	0.38	278.25
18	16.782	0.33	152.50	16.791	0.31	207.61	64	16.566	0.38	80.22	16.550	0.39	279.82
20	16.811	0.29	140.73	16.831	0.31	219.34	66	16.558	0.40	78.68	16.592	0.41	281.33
22	16.817	0.30	132.65	16.822	0.31	227.13	68	16.501	0.42	77.18	16.513	0.44	282.91
24	16.773	0.32	126.58	16.843	0.33	233.41	70	16.487	0.45	75.65	16.446	0.47	284.37
26	16.797	0.30	121.75	16.809	0.31	238.34	72	16.480	0.48	74.12	16.412	0.51	285.90
28	16.721	0.32	117.49	16.777	0.31	242.49	74	16.437	0.53	72.53	16.299	N/A	287.45
30	16.714	0.30	113.92	16.820	0.31	246.12	76	16.284	N/A	70.98	16.214	N/A	289.05
32	16.726	0.30	110.82	16.716	0.35	249.16	78	16.294	N/A	69.36	16.187	N/A	290.67
34	16.751	0.30	108.01	16.743	0.32	251.98	80	16.248	N/A	67.73	16.155	N/A	292.30
36	16.750	0.30	105.31	16.729	0.30	254.70	82	16.172	N/A	66.03	15.898	N/A	293.90
38	16.736	0.30	102.99	16.745	0.30	257.04	84	N/A	N/A	N/A	N/A	N/A	N/A
40	16.703	0.32	100.72	16.722	0.31	259.23	86	N/A	N/A	N/A	N/A	N/A	N/A
42	16.712	0.31	98.67	16.708	0.31	261.37	88	N/A	N/A	N/A	N/A	N/A	N/A
44	16.711	0.31	96.71	16.739	0.31	263.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.53
Type-A Interpolating Function, u(int) (%)	±0.29
Combined Standard Uncertainty, u(c) (%)	±0.61
Effective degrees of freedom, DF(c)	20267
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.2
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
16.755	0.18000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

±0.71
+0.39 / -1.1
+1.1 / -1.8
+Inf
1.96
30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	Hukseflux
Model:	SR20-T2	Serial Number:	15288
Calibration Date:	6/19/2023	Due Date:	6/19/2024
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	10/01/2022	10/01/2023
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/23/2023	04/23/2024
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/23/2023	04/23/2024
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/03/2023	02/03/2025
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/03/2023	02/03/2025
Infrared Irradiance ‡	Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	03/31/2022	03/31/2027

+ Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

Calibration Results 15288 Hukseflux SR20-T2

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win σ * Tc^4

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			ΡM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	16.987	0.33	94.83	17.234	0.33	265.15
2	N/A	N/A	N/A	N/A	N/A	N/A	48	16.924	0.32	93.03	17.085	0.33	266.99
4	N/A	N/A	N/A	N/A	N/A	N/A	50	16.964	0.32	91.29	17.069	0.34	268.69
6	N/A	N/A	N/A	N/A	N/A	N/A	52	16.927	0.33	89.63	17.104	0.33	270.39
8	N/A	N/A	N/A	N/A	N/A	N/A	54	16.916	0.33	87.98	17.210	0.34	272.04
10	N/A	N/A	N/A	N/A	N/A	N/A	56	16.924	0.34	86.37	17.129	0.34	273.62
12	N/A	N/A	N/A	N/A	N/A	N/A	58	16.904	0.35	84.80	17.126	0.35	275.20
14	N/A	N/A	N/A	N/A	N/A	N/A	60	16.935	0.36	83.25	17.122	0.36	276.75
16	N/A	N/A	N/A	N/A	N/A	N/A	62	16.910	0.37	81.73	17.142	0.38	278.25
18	17.150	0.33	152.50	17.172	0.31	207.61	64	16.915	0.38	80.22	17.047	0.39	279.82
20	17.180	0.29	140.73	17.225	0.31	219.34	66	16.923	0.40	78.68	17.123	0.41	281.33
22	17.183	0.30	132.65	17.215	0.31	227.13	68	16.874	0.42	77.18	17.033	0.44	282.91
24	17.132	0.32	126.58	17.241	0.33	233.41	70	16.883	0.45	75.65	16.984	0.47	284.37
26	17.153	0.30	121.75	17.211	0.31	238.34	72	16.888	0.48	74.12	16.978	0.51	285.90
28	17.060	0.32	117.49	17.181	0.31	242.49	74	16.860	0.53	72.53	16.905	N/A	287.45
30	17.052	0.30	113.92	17.235	0.31	246.12	76	16.709	N/A	70.98	16.834	N/A	289.05
32	17.064	0.30	110.82	17.139	0.35	249.16	78	16.752	N/A	69.36	16.857	N/A	290.67
34	17.091	0.30	108.01	17.174	0.32	251.98	80	16.742	N/A	67.73	16.872	N/A	292.30
36	17.096	0.30	105.31	17.156	0.30	254.70	82	16.728	N/A	66.03	16.663	N/A	293.90
38	17.082	0.30	102.99	17.174	0.30	257.04	84	N/A	N/A	N/A	N/A	N/A	N/A
40	17.050	0.32	100.72	17.156	0.31	259.23	86	N/A	N/A	N/A	N/A	N/A	N/A
42	17.055	0.31	98.67	17.130	0.31	261.37	88	N/A	N/A	N/A	N/A	N/A	N/A
44	17.054	0.31	96.71	17.162	0.31	263.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- I = reference irradiance (W/m²), beam (B) or global (G) where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.53
Type-A Interpolating Function, u(int) (%)	±0.30
Combined Standard Uncertainty, $u(c)$ (%)	±0.61
Effective degrees of freedom, DF(c)	18263
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.2
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

	Table 4.	Calibration	Label	Values
--	----------	-------------	-------	--------

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
17.140	0.18000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.71
Offset Uncertainty, U(off) (%)	+0.56 / -1.4
Expanded Uncertainty, U (%)	+1.3 / -2.1
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer (Ventilated)	Manufacturer:	Hukseflux
Model:	SR20-T2	Serial Number:	15357
Calibration Date:	6/19/2023	Due Date:	6/19/2024
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type Instrument Calibration Date Calibra	ration Due Date
Beam Irradiance † Eppley Absolute Cavity Radiometer Model HF, S/N 29219 10/01/2022 11	0/01/2023
Diffuse Irradiance †Hukseflux Pyranometer Model SR25, S/N 254104/23/202304/23/2023)4/23/2024
Diffuse Irradiance † Hukseflux Pyranometer Model SR25, S/N 2542 04/23/2023 04/23/2023)4/23/2024
Data Acquisition NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998 02/03/2023 02/03/2023	2/03/2025
Data Acquisition NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999 02/03/2023 02/03/2023)2/03/2025
Infrared Irradiance ‡ Eppley Downwelling Pyrgeometer Model PIR, S/N 38520F3 03/31/2022 03)3/31/2027

+ Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

Calibration Results 15357 Hukseflux SR20-T2

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity ($\mu V/W/m^2$), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
- I = reference irradiance (W/m²), beam (B) or global (G) where, G = B * COS(Z) + D,
 - ere, O = D COS(2) + D,
 - Z = zenith angle (degrees),D = reference diffuse irradiance (W/m²).

[1]

= Win - Wout = Win - $\sigma * Tc^{4}$ where, Win = incoming infrared (W/m²), $\sigma = 5.6704e-8$ W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Tahlo 2	Instrument Responsiv	/itv (R) an	d Calibration	Type-B Standard	Uncertainty u(R)
10010 2.	mou ument response	, ity (it) uii	a ounstation	Type-D oluniaura	oncontainty, a(b)

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	17.111	0.33	94.80	17.055	0.33	265.20
2	N/A	N/A	N/A	N/A	N/A	N/A	48	17.100	0.32	93.00	16.978	0.33	266.96
4	N/A	N/A	N/A	N/A	N/A	N/A	50	17.100	0.32	91.31	16.984	0.32	268.72
6	N/A	N/A	N/A	N/A	N/A	N/A	52	17.085	0.33	89.60	16.974	0.33	270.37
8	N/A	N/A	N/A	N/A	N/A	N/A	54	17.090	0.33	87.96	16.996	0.36	272.02
10	N/A	N/A	N/A	N/A	N/A	N/A	56	17.055	0.34	86.39	16.980	0.34	273.60
12	N/A	N/A	N/A	N/A	N/A	N/A	58	17.045	0.35	84.82	16.978	0.35	275.15
14	N/A	N/A	N/A	N/A	N/A	N/A	60	17.021	0.36	83.27	16.988	0.36	276.73
16	N/A	N/A	N/A	N/A	N/A	N/A	62	17.002	0.37	81.75	16.943	0.38	278.27
18	17.171	0.33	152.44	17.165	0.33	207.87	64	16.981	0.38	80.20	16.934	0.39	279.79
20	17.153	0.30	140.69	17.175	0.32	219.93	66	16.946	0.40	78.70	16.927	0.41	281.31
22	17.148	0.31	132.72	17.177	0.33	227.22	68	16.903	0.42	77.16	16.875	0.44	282.93
24	17.136	0.32	126.65	17.149	0.35	233.47	70	16.882	0.45	75.63	16.844	0.47	284.34
26	17.132	0.32	121.69	17.138	0.30	238.41	72	16.863	0.48	74.10	16.834	0.50	285.92
28	17.104	0.31	117.54	17.122	0.31	242.44	74	16.835	0.53	72.51	16.725	N/A	287.47
30	17.080	0.31	113.88	17.137	0.30	246.07	76	16.786	N/A	70.96	16.766	N/A	289.03
32	17.092	0.30	110.83	17.109	0.34	248.98	78	16.726	N/A	69.34	16.673	N/A	290.65
34	17.129	0.33	107.90	17.075	0.30	252.08	80	16.706	N/A	67.73	16.607	N/A	292.27
36	17.088	0.30	105.34	17.059	0.32	254.66	82	16.677	N/A	66.01	16.500	N/A	293.88
38	17.106	0.30	102.96	17.058	0.30	257.08	84	N/A	N/A	N/A	N/A	N/A	N/A
40	17.092	0.33	100.75	17.050	0.31	259.27	86	N/A	N/A	N/A	N/A	N/A	N/A
42	17.109	0.33	98.65	17.021	0.34	261.34	88	N/A	N/A	N/A	N/A	N/A	N/A
44	17.094	0.31	96.68	17.015	0.31	263.32	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.53
Type-A Interpolating Function, u(int) (%)	±0.20
Combined Standard Uncertainty, u(c) (%)	±0.57
Effective degrees of freedom, DF(c)	79945
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.1
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

	Table 4.	Calibration	Label	Values
--	----------	-------------	-------	--------

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
17.051	0.18000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.71
Offset Uncertainty, U(off) (%)	+0.50 / -0.45
Expanded Uncertainty, U (%)	+1.2 / -1.2
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	Hukseflux
Model:	SR20-T2	Serial Number:	15360
Calibration Date:	6/19/2023	Due Date:	6/19/2024
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	10/01/2022	10/01/2023
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/23/2023	04/23/2024
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/23/2023	04/23/2024
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/03/2023	02/03/2025
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/03/2023	02/03/2025
Infrared Irradiance ‡	Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	03/31/2022	03/31/2027

+ Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

Calibration Results 15360 Hukseflux SR20-T2

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4,

- Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

[1]

Tc = case temperature of pyrgeometer (K).

Fable 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertaint	/. u(ł	B)

Zenith		AM			ΡM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	16.397	0.33	94.83	16.556	0.33	265.15
2	N/A	N/A	N/A	N/A	N/A	N/A	48	16.386	0.32	93.03	16.405	0.33	266.99
4	N/A	N/A	N/A	N/A	N/A	N/A	50	16.408	0.32	91.29	16.380	0.34	268.69
6	N/A	N/A	N/A	N/A	N/A	N/A	52	16.384	0.33	89.63	16.385	0.33	270.39
8	N/A	N/A	N/A	N/A	N/A	N/A	54	16.336	0.33	87.98	16.481	0.34	272.04
10	N/A	N/A	N/A	N/A	N/A	N/A	56	16.328	0.34	86.37	16.397	0.34	273.62
12	N/A	N/A	N/A	N/A	N/A	N/A	58	16.303	0.35	84.80	16.378	0.35	275.20
14	N/A	N/A	N/A	N/A	N/A	N/A	60	16.302	0.36	83.25	16.373	0.36	276.75
16	N/A	N/A	N/A	N/A	N/A	N/A	62	16.271	0.37	81.73	16.390	0.38	278.25
18	16.610	0.33	152.50	16.587	0.31	207.61	64	16.266	0.38	80.22	16.302	0.39	279.82
20	16.617	0.29	140.73	16.645	0.31	219.34	66	16.233	0.40	78.68	16.343	0.41	281.33
22	16.604	0.30	132.65	16.641	0.31	227.13	68	16.178	0.42	77.18	16.276	0.44	282.91
24	16.570	0.32	126.58	16.647	0.33	233.41	70	16.143	0.45	75.65	16.194	0.47	284.37
26	16.593	0.30	121.75	16.610	0.31	238.34	72	16.122	0.48	74.12	16.160	0.51	285.90
28	16.499	0.32	117.49	16.579	0.31	242.49	74	16.075	0.53	72.53	16.065	N/A	287.45
30	16.491	0.30	113.92	16.632	0.31	246.12	76	15.975	N/A	70.98	16.019	N/A	289.05
32	16.511	0.30	110.82	16.543	0.35	249.16	78	15.930	N/A	69.36	16.056	N/A	290.67
34	16.521	0.30	108.01	16.525	0.32	251.98	80	15.905	N/A	67.73	16.076	N/A	292.30
36	16.495	0.30	105.31	16.521	0.30	254.70	82	15.832	N/A	66.03	15.943	N/A	293.90
38	16.489	0.30	102.99	16.523	0.31	257.04	84	N/A	N/A	N/A	N/A	N/A	N/A
40	16.449	0.32	100.72	16.500	0.31	259.23	86	N/A	N/A	N/A	N/A	N/A	N/A
42	16.435	0.31	98.67	16.460	0.31	261.37	88	N/A	N/A	N/A	N/A	N/A	N/A
44	16.414	0.31	96.71	16.492	0.31	263.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.53
Type-A Interpolating Function, u(int) (%)	±0.32
Combined Standard Uncertainty, $u(c)$ (%)	±0.62
Effective degrees of freedom, DF(c)	15742
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.2
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

	Table 4.	Calibration	Label	Values
--	----------	-------------	-------	--------

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
16.468	0.18000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.71
Offset Uncertainty, U(off) (%)	+1.00 / -1.0
Expanded Uncertainty, U (%)	+1.7 / -1.7
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer (Ventilated)	Manufacturer:	Hukseflux
Model:	SR20-T2	Serial Number:	15364
Calibration Date:	6/19/2023	Due Date:	6/19/2024
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type Instrument Calibration Date Calibra	ration Due Date
Beam Irradiance † Eppley Absolute Cavity Radiometer Model HF, S/N 29219 10/01/2022 11	0/01/2023
Diffuse Irradiance †Hukseflux Pyranometer Model SR25, S/N 254104/23/202304/23/2023)4/23/2024
Diffuse Irradiance † Hukseflux Pyranometer Model SR25, S/N 2542 04/23/2023 04/23/2023)4/23/2024
Data Acquisition NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998 02/03/2023 02/03/2023	2/03/2025
Data Acquisition NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999 02/03/2023 02/03/2023)2/03/2025
Infrared Irradiance ‡ Eppley Downwelling Pyrgeometer Model PIR, S/N 38520F3 03/31/2022 03)3/31/2027

+ Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

Calibration Results 15364 Hukseflux SR20-T2

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

where, G = B * COS(Z) + D,

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	17.073	0.33	94.80	17.118	0.33	265.20
2	N/A	N/A	N/A	N/A	N/A	N/A	48	17.025	0.32	93.00	17.064	0.33	266.96
4	N/A	N/A	N/A	N/A	N/A	N/A	50	17.007	0.32	91.31	17.081	0.32	268.72
6	N/A	N/A	N/A	N/A	N/A	N/A	52	16.982	0.33	89.60	17.073	0.33	270.37
8	N/A	N/A	N/A	N/A	N/A	N/A	54	16.982	0.33	87.96	17.060	0.36	272.02
10	N/A	N/A	N/A	N/A	N/A	N/A	56	16.940	0.34	86.39	17.063	0.34	273.60
12	N/A	N/A	N/A	N/A	N/A	N/A	58	16.929	0.35	84.82	17.046	0.35	275.18
14	N/A	N/A	N/A	N/A	N/A	N/A	60	16.901	0.36	83.27	17.039	0.36	276.73
16	N/A	N/A	N/A	N/A	N/A	N/A	62	16.873	0.37	81.75	N/A	N/A	N/A
18	17.193	0.33	152.44	17.208	0.33	207.87	64	16.838	0.38	80.20	16.980	0.39	279.79
20	17.190	0.30	140.69	17.213	0.32	219.93	66	16.795	0.40	78.70	16.942	0.41	281.31
22	17.188	0.31	132.72	17.230	0.33	227.22	68	16.742	0.42	77.16	16.896	0.44	282.93
24	17.186	0.32	126.65	17.203	0.35	233.47	70	16.696	0.45	75.63	16.857	0.47	284.34
26	17.177	0.32	121.69	17.191	0.30	238.41	72	16.649	0.48	74.10	16.853	0.50	285.92
28	17.145	0.31	117.54	17.180	0.31	242.44	74	16.591	0.53	72.51	16.792	N/A	287.47
30	17.114	0.31	113.88	17.183	0.30	246.07	76	16.518	N/A	70.96	16.741	N/A	289.03
32	17.101	0.30	110.83	17.184	0.34	248.98	78	16.453	N/A	69.34	16.641	N/A	290.65
34	17.140	0.33	107.90	17.144	0.30	252.08	80	16.409	N/A	67.73	16.630	N/A	292.27
36	17.084	0.30	105.34	17.117	0.32	254.66	82	16.346	N/A	66.01	16.507	N/A	293.88
38	17.087	0.30	102.96	17.116	0.30	257.08	84	N/A	N/A	N/A	N/A	N/A	N/A
40	17.057	0.33	100.75	17.120	0.31	259.27	86	N/A	N/A	N/A	N/A	N/A	N/A
42	17.062	0.33	98.65	17.092	0.34	261.34	88	N/A	N/A	N/A	N/A	N/A	N/A
44	17.049	0.31	96.68	17.086	0.31	263.32	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.53
Type-A Interpolating Function, u(int) (%)	±0.20
Combined Standard Uncertainty, u(c) (%)	±0.57
Effective degrees of freedom, DF(c)	73788
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.1
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
17 067	0 18000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.71
Offset Uncertainty, U(off) (%)	+0.68 / -0.97
Expanded Uncertainty, U (%)	+1.4 / -1.7
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	Hukseflux
Model:	SR20-T2	Serial Number:	15366
Calibration Date:	6/19/2023	Due Date:	6/19/2024
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	10/01/2022	10/01/2023
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/23/2023	04/23/2024
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/23/2023	04/23/2024
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/03/2023	02/03/2025
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/03/2023	02/03/2025
Infrared Irradiance ‡	Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	03/31/2022	03/31/2027

+ Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

Calibration Results 15366 Hukseflux SR20-T2

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win σ * Tc^4
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

- where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

[1]

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	16.737	0.33	94.83	16.887	0.33	265.15
2	N/A	N/A	N/A	N/A	N/A	N/A	48	16.666	0.32	93.03	16.728	0.33	266.99
4	N/A	N/A	N/A	N/A	N/A	N/A	50	16.699	0.32	91.29	16.712	0.34	268.69
6	N/A	N/A	N/A	N/A	N/A	N/A	52	16.678	0.33	89.63	16.743	0.33	270.39
8	N/A	N/A	N/A	N/A	N/A	N/A	54	16.635	0.33	87.98	16.841	0.34	272.04
10	N/A	N/A	N/A	N/A	N/A	N/A	56	16.645	0.34	86.37	16.749	0.34	273.62
12	N/A	N/A	N/A	N/A	N/A	N/A	58	16.614	0.35	84.80	16.736	0.35	275.20
14	N/A	N/A	N/A	N/A	N/A	N/A	60	16.619	0.36	83.25	16.705	0.36	276.75
16	N/A	N/A	N/A	N/A	N/A	N/A	62	16.591	0.37	81.73	16.727	0.38	278.25
18	16.893	0.33	152.50	16.892	0.31	207.61	64	16.581	0.38	80.22	16.608	0.39	279.82
20	16.920	0.29	140.73	16.934	0.31	219.34	66	16.560	0.40	78.68	16.678	0.41	281.33
22	16.933	0.30	132.65	16.921	0.31	227.13	68	16.498	0.42	77.18	16.597	0.44	282.91
24	16.889	0.32	126.58	16.944	0.33	233.41	70	16.476	0.45	75.65	16.525	0.47	284.37
26	16.908	0.30	121.75	16.907	0.31	238.34	72	16.460	0.48	74.12	16.504	0.51	285.90
28	16.826	0.32	117.49	16.874	0.31	242.49	74	16.398	0.53	72.53	16.414	N/A	287.45
30	16.829	0.30	113.92	16.920	0.31	246.12	76	16.268	N/A	70.98	16.304	N/A	289.05
32	16.824	0.30	110.82	16.831	0.35	249.16	78	16.229	N/A	69.36	16.298	N/A	290.67
34	16.844	0.30	108.01	16.862	0.32	251.98	80	16.188	N/A	67.73	16.313	N/A	292.30
36	16.850	0.30	105.31	16.842	0.30	254.70	82	16.113	N/A	66.03	16.132	N/A	293.90
38	16.829	0.30	102.99	16.854	0.30	257.04	84	N/A	N/A	N/A	N/A	N/A	N/A
40	16.790	0.32	100.72	16.820	0.31	259.23	86	N/A	N/A	N/A	N/A	N/A	N/A
42	16.787	0.31	98.67	16.791	0.31	261.37	88	N/A	N/A	N/A	N/A	N/A	N/A
44	16.785	0.31	96.71	16.825	0.31	263.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.53
Type-A Interpolating Function, u(int) (%)	±0.30
Combined Standard Uncertainty, u(c) (%)	±0.61
Effective degrees of freedom, DF(c)	19455
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.2
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
16.833	0.18000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.71
Offset Uncertainty, U(off) (%)	+0.52 / -1.3
Expanded Uncertainty, U (%)	+1.2 / -2.0
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	Hukseflux
Model:	SR25	Serial Number:	2549
Calibration Date:	6/19/2023	Due Date:	6/19/2025
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	10/01/2022	10/01/2023
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/23/2023	04/23/2024
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/23/2023	04/23/2024
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/03/2023	02/03/2025
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/03/2023	02/03/2025
Infrared Irradiance ‡	Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	03/31/2022	03/31/2027

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

Calibration Results 2549 Hukseflux SR25

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

V = radiometer output voltage (microvolts),

Rnet = radiometer net infrared responsivity (μ V/W/m²), see Table 4,

Wnet = effective net infrared measured by pyrgeometer (W/m²),

= Win - Wout = Win - $\sigma * Tc^4$

where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G) where, G = B * COS(Z) + D,

e, G = B CO3(2) + D,

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

[1]

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(E	Table 2.	Instrument Responsivity	(R) and Calibration	Type-B Standard	Uncertainty, u(B)
---	----------	-------------------------	---------------------	-----------------	-------------------

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	9.1677	0.33	94.83	9.1571	0.33	265.15
2	N/A	N/A	N/A	N/A	N/A	N/A	48	9.1920	0.32	93.03	9.1095	0.34	266.99
4	N/A	N/A	N/A	N/A	N/A	N/A	50	9.2012	0.32	91.29	9.0966	0.34	268.69
6	N/A	N/A	N/A	N/A	N/A	N/A	52	9.2057	0.33	89.63	9.1050	0.33	270.39
8	N/A	N/A	N/A	N/A	N/A	N/A	54	9.2121	0.33	87.98	9.1562	0.34	272.04
10	N/A	N/A	N/A	N/A	N/A	N/A	56	9.2274	0.34	86.37	9.1489	0.34	273.62
12	N/A	N/A	N/A	N/A	N/A	N/A	58	9.2333	0.35	84.80	9.1524	0.35	275.20
14	N/A	N/A	N/A	N/A	N/A	N/A	60	9.2544	0.36	83.25	9.1712	0.36	276.75
16	N/A	N/A	N/A	N/A	N/A	N/A	62	9.2632	0.37	81.73	9.1940	0.38	278.25
18	9.1094	0.33	152.50	9.0887	0.31	207.61	64	9.2776	0.38	80.22	9.1833	0.39	279.82
20	9.1261	0.29	140.73	9.1013	0.31	219.34	66	9.2814	0.40	78.68	9.1953	0.42	281.33
22	9.1258	0.30	132.65	9.1026	0.31	227.13	68	9.2943	0.42	77.18	9.2089	0.44	282.86
24	9.1207	0.32	126.58	9.1085	0.33	233.41	70	9.3014	0.45	75.65	9.2054	0.47	284.37
26	9.1358	0.30	121.75	9.1077	0.31	238.34	72	9.3215	0.49	74.12	9.2185	0.51	285.90
28	9.1209	0.32	117.49	9.0798	0.31	242.49	74	9.3421	0.54	72.53	9.2171	N/A	287.45
30	9.1083	0.30	113.92	9.1097	0.31	246.12	76	9.3271	N/A	70.98	9.2596	N/A	289.05
32	9.1437	0.30	110.82	9.0849	0.35	249.16	78	9.3772	N/A	69.36	9.3277	N/A	290.67
34	9.1611	0.30	108.01	9.0854	0.32	251.98	80	9.4532	N/A	67.73	9.3568	N/A	292.30
36	9.1585	0.30	105.31	9.0976	0.30	254.70	82	9.4969	N/A	66.03	9.3550	N/A	293.90
38	9.1684	0.30	102.99	9.0978	0.31	257.04	84	N/A	N/A	N/A	N/A	N/A	N/A
40	9.1675	0.32	100.72	9.1112	0.31	259.23	86	N/A	N/A	N/A	N/A	N/A	N/A
42	9.1779	0.31	98.67	9.0996	0.31	261.37	88	N/A	N/A	N/A	N/A	N/A	N/A
44	9.1823	0.31	96.71	9.1289	0.31	263.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.54
Type-A Interpolating Function, u(int) (%)	±0.22
Combined Standard Uncertainty, u(c) (%)	±0.58
Effective degrees of freedom, DF(c)	53137
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.1
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
9,1595	0.043000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.71
Offset Uncertainty, U(off) (%)	+1.0 / -0.81
Expanded Uncertainty, U (%)	+1.8 / -1.5
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

References:

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5

[6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	Hukseflux
Model:	SR25	Serial Number:	2550
Calibration Date:	6/19/2023	Due Date:	6/19/2025
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	10/01/2022	10/01/2023
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/23/2023	04/23/2024
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/23/2023	04/23/2024
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/03/2023	02/03/2025
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/03/2023	02/03/2025
Infrared Irradiance ‡	Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	03/31/2022	03/31/2027

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

Calibration Results 2550 Hukseflux SR25

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity ($\mu V/W/m^2$), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u

Zenith		AM			ΡM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.7873	0.33	94.83	8.7650	0.33	265.15
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.7942	0.32	93.03	8.7198	0.34	266.99
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.8001	0.32	91.29	8.7113	0.34	268.69
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.8069	0.33	89.63	8.7124	0.33	270.39
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.8128	0.33	87.98	8.7674	0.34	272.04
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.8239	0.34	86.37	8.7506	0.35	273.62
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.8282	0.35	84.80	8.7554	0.35	275.20
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.8450	0.36	83.25	8.7737	0.37	276.75
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.8514	0.37	81.73	8.7963	0.38	278.25
18	8.7150	0.33	152.50	8.7120	0.31	207.61	64	8.8575	0.38	80.22	8.7887	0.40	279.82
20	8.7355	0.29	140.73	8.7130	0.31	219.34	66	8.8576	0.40	78.68	8.8069	0.42	281.33
22	8.7364	0.30	132.65	8.7133	0.31	227.13	68	8.8649	0.42	77.18	8.8143	0.44	282.86
24	8.7306	0.32	126.58	8.7199	0.33	233.41	70	8.8791	0.45	75.65	8.8090	0.47	284.37
26	8.7414	0.30	121.75	8.7212	0.31	238.34	72	8.9082	0.49	74.12	8.8252	0.51	285.90
28	8.7240	0.32	117.49	8.6981	0.31	242.49	74	8.9327	0.54	72.53	8.8194	N/A	287.45
30	8.7207	0.30	113.92	8.7175	0.31	246.12	76	8.9143	N/A	70.98	8.8255	N/A	289.05
32	8.7455	0.30	110.82	8.6936	0.35	249.16	78	8.9665	N/A	69.36	8.8719	N/A	290.67
34	8.7661	0.30	108.01	8.7043	0.32	251.98	80	9.0276	N/A	67.73	8.9290	N/A	292.30
36	8.7701	0.30	105.31	8.6984	0.30	254.70	82	9.0779	N/A	66.03	8.9193	N/A	293.90
38	8.7775	0.30	102.99	8.7016	0.31	257.04	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.7848	0.32	100.72	8.7177	0.31	259.23	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.7953	0.31	98.67	8.7006	0.31	261.37	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.8077	0.31	96.71	8.7237	0.31	263.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.54
Type-A Interpolating Function, u(int) (%)	±0.21
Combined Standard Uncertainty, u(c) (%)	±0.58
Effective degrees of freedom, DF(c)	66783
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.1
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4.	Calibration	Label V	/alues
----------	-------------	---------	--------

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.7792	0.043000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.72		
Offset Uncertainty, U(off) (%)	+0.75 / -0.98		
Expanded Uncertainty, U (%)	+1.5 / -1.7		
Effective degrees of freedom, DF	+Inf		
Coverage factor, k	1.96		
Valid zenith angle range	30.0° to 60.0°		

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	NIP	Serial Number:	31121E6
Calibration Date:	6/19/2023	Due Date:	6/19/2024
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	10/01/2022	10/01/2023
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/23/2023	04/23/2024
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/23/2023	04/23/2024
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/03/2023	02/03/2025
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/03/2023	02/03/2025

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 31121E6 Eppley NIP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,

Figure 1. Responsivity vs Zenith Angle

Wnet = effective net infrared measured by pyrgeometer (W/m²),

= Win - Wout = Win - $\sigma * Tc^4$

where, G = B * COS(Z) + D,

Z = zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

[1]

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.8570	0.30	94.82	8.7639	0.29	265.16
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.8459	0.29	93.02	8.8285	0.29	266.98
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.8344	0.29	91.28	8.8623	0.29	268.73
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.8573	0.29	89.62	8.8327	0.29	270.38
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.8431	0.29	87.97	8.7842	0.29	272.03
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.8260	0.29	86.36	8.7870	0.29	273.61
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.8222	0.29	84.83	8.8074	0.29	275.19
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.8228	0.29	83.29	8.8114	0.30	276.74
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.8064	0.29	81.71	8.7911	0.30	278.29
18	8.7481	0.30	152.34	8.7737	0.31	208.64	64	8.8024	0.30	80.21	8.8369	0.30	279.81
20	8.7221	0.30	140.63	8.7777	0.32	219.47	66	8.7839	0.30	78.67	8.8069	0.30	281.32
22	8.7293	0.28	132.63	8.7777	0.31	227.35	68	8.7830	0.30	77.18	8.8418	0.31	282.90
24	8.7371	0.31	126.57	8.7227	0.29	233.39	70	8.7851	0.30	75.64	8.8508	0.31	284.36
26	8.7310	0.29	121.62	8.7121	0.29	238.21	72	8.8033	0.30	74.11	8.8713	0.31	285.90
28	8.7583	0.29	117.47	8.7621	0.31	242.44	74	8.8279	0.31	72.57	8.8108	N/A	287.48
30	8.7679	0.30	113.99	8.7602	0.32	246.02	76	8.8008	N/A	70.97	8.7581	N/A	289.04
32	8.7863	0.30	110.85	8.7970	0.32	249.24	78	8.8055	N/A	69.36	8.6179	N/A	290.62
34	8.7662	0.31	107.92	8.7536	0.31	252.18	80	8.8056	N/A	67.70	8.6951	N/A	292.32
36	8.7353	0.30	105.36	8.7694	0.29	254.62	82	8.8512	N/A	65.98	8.6603	N/A	293.85
38	8.7714	0.29	102.98	8.7762	0.29	257.03	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.7547	0.30	100.71	8.7785	0.30	259.29	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.7541	0.29	98.66	8.8086	0.29	261.30	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.7414	0.29	96.70	8.7829	0.29	263.33	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.32
Type-A Interpolating Function, u(int) (%)	±0.34
Combined Standard Uncertainty, $u(c)$ (%)	±0.47
Effective degrees of freedom, DF(c)	3894
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.92
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.7770	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.62
Offset Uncertainty, U(off) (%)	+0.97 / -0.48
Expanded Uncertainty, U (%)	+1.6 / -1.1
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31146F3
Calibration Date:	6/19/2023	Due Date:	6/19/2024
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type Instrument Calibration Date Calibration	
	Due Date
Beam Irradiance † Eppley Absolute Cavity Radiometer Model HF, S/N 29219 10/01/2022 10/01.	2023
Diffuse Irradiance † Hukseflux Pyranometer Model SR25, S/N 2541 04/23/2023 04/23	2024
Diffuse Irradiance † Hukseflux Pyranometer Model SR25, S/N 2542 04/23/2023 04/23	2024
Data Acquisition NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998 02/03/2023 02/03	2025
Data Acquisition NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999 02/03/2023 02/03	2025
Infrared Irradiance ‡ Eppley Downwelling Pyrgeometer Model PIR, S/N 32309F3 03/31/2022 03/31	2027

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

Calibration Results 31146F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win σ * Tc^4
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.4806	0.38	94.79	7.4794	0.34	265.19
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.4655	0.34	93.04	7.4508	0.34	267.01
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.4501	0.34	91.31	7.4088	0.35	268.71
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.4191	0.35	89.59	7.3463	0.36	270.41
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.3945	0.35	88.00	7.3254	0.37	272.01
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.3837	0.36	86.39	7.3159	0.38	273.63
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.3565	0.37	84.81	7.2899	0.39	275.17
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.3420	0.38	83.27	7.2624	0.40	276.73
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.3184	0.40	81.74	7.2211	0.42	278.27
18	7.6706	0.32	152.29	7.6628	0.33	207.83	64	7.3191	0.41	80.19	7.2229	0.44	279.79
20	7.6515	0.31	140.55	7.6722	0.32	219.52	66	7.3083	0.43	78.69	7.2025	0.46	281.30
22	7.6342	0.32	132.70	7.6535	0.33	227.25	68	7.2955	0.46	77.16	7.1905	0.50	282.92
24	7.6176	0.33	126.63	7.6409	0.32	233.54	70	7.2462	0.49	75.67	7.1213	0.54	284.38
26	7.6050	0.32	121.68	7.6430	0.31	238.35	72	7.1722	0.54	74.09	6.9862	0.59	285.92
28	7.5852	0.33	117.53	7.6434	0.33	242.49	74	7.1142	0.59	72.55	6.8524	N/A	287.46
30	7.5685	0.31	113.95	7.6410	0.32	246.06	76	6.9913	N/A	70.95	6.7707	N/A	289.02
32	7.5721	0.34	110.82	7.6109	0.34	249.28	78	7.0005	N/A	69.34	6.7331	N/A	290.64
34	7.5693	0.31	107.89	7.5542	0.32	252.08	80	6.9887	N/A	67.72	6.7934	N/A	292.26
36	7.5385	0.32	105.33	7.5541	0.35	254.65	82	6.9425	N/A	66.00	6.6361	N/A	293.87
38	7.5338	0.32	102.95	7.5393	0.32	257.06	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.5084	0.35	100.75	7.5311	0.35	259.21	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.4979	0.36	98.69	7.5075	0.33	261.33	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.4756	0.33	96.67	7.4841	0.33	263.31	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

I = reference irradiance (W/m²), beam (B) or global (G)

- where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) × PM

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.59
Type-A Interpolating Function, u(int) (%)	±0.32
Combined Standard Uncertainty, u(c) (%)	±0.68
Effective degrees of freedom, DF(c)	21034
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

± An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.4713	0.56000

† Rnet determination date: 02/27/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.79
Offset Uncertainty, U(off) (%)	+2.3 / -2.8
Expanded Uncertainty, U (%)	+3.1 / -3.6
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31147F3
Calibration Date:	6/19/2023	Due Date:	6/19/2024
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	10/01/2022	10/01/2023
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/23/2023	04/23/2024
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/23/2023	04/23/2024
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/03/2023	02/03/2025
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/03/2023	02/03/2025
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 32309F3	03/31/2022	03/31/2027

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

Calibration Results 31147F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

D = reference diffuse irradiance (W/m²).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

where, G = B * COS(Z) + D,

[1]

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.4626	0.38	94.79	7.4101	0.34	265.19
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.4448	0.34	93.04	7.3858	0.34	267.01
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.4299	0.34	91.31	7.3454	0.35	268.71
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.4037	0.35	89.59	7.2806	0.36	270.41
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.3813	0.36	88.00	7.2481	0.37	272.01
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.3743	0.36	86.39	7.2419	0.38	273.63
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.3536	0.37	84.81	7.2113	0.39	275.17
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.3461	0.39	83.27	7.1800	0.41	276.73
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.3184	0.40	81.74	7.1368	0.42	278.27
18	7.6412	0.33	152.29	7.6254	0.33	207.83	64	7.3169	0.42	80.19	7.1316	0.44	279.79
20	7.6181	0.31	140.55	7.6376	0.32	219.52	66	7.3249	0.44	78.69	7.1280	0.47	281.30
22	7.6017	0.32	132.70	7.6262	0.33	227.25	68	7.3453	0.46	77.16	7.1373	0.51	282.92
24	7.5822	0.33	126.63	7.6184	0.32	233.54	70	7.2886	0.50	75.67	7.0079	0.55	284.38
26	7.5635	0.32	121.68	7.6128	0.31	238.35	72	7.2735	0.54	74.09	6.9264	0.60	285.92
28	7.5485	0.33	117.53	7.6085	0.33	242.49	74	7.2421	0.60	72.55	6.7890	N/A	287.46
30	7.5348	0.31	113.95	7.6023	0.33	246.06	76	7.1264	N/A	70.95	6.7041	N/A	289.02
32	7.5344	0.34	110.82	7.5717	0.34	249.28	78	7.1596	N/A	69.34	6.6568	N/A	290.64
34	7.5264	0.32	107.89	7.5129	0.32	252.08	80	7.1655	N/A	67.72	6.6986	N/A	292.26
36	7.4980	0.32	105.33	7.5163	0.35	254.65	82	7.1313	N/A	66.00	6.5769	N/A	293.87
38	7.4949	0.32	102.95	7.4948	0.32	257.06	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.4665	0.36	100.75	7.4768	0.35	259.21	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.4601	0.36	98.69	7.4552	0.33	261.33	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.4406	0.33	96.67	7.4232	0.33	263.31	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.60
Type-A Interpolating Function, u(int) (%)	±0.33
Combined Standard Uncertainty, u(c) (%)	±0.68
Effective degrees of freedom, DF(c)	20814
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.4244	0.59000

† Rnet determination date: 02/28/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.80
Offset Uncertainty, U(off) (%)	+2.4 / -3.3
Expanded Uncertainty, U (%)	+3.2 / -4.1
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31148F3
Calibration Date:	6/19/2023	Due Date:	6/19/2024
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	10/01/2022	10/01/2023
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/23/2023	04/23/2024
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/23/2023	04/23/2024
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/03/2023	02/03/2025
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/03/2023	02/03/2025
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 32309F3	03/31/2022	03/31/2027

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

Calibration Results 31148F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = $Win Wout = Win \sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.3415	0.38	94.79	7.3754	0.34	265.19
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.3163	0.34	93.04	7.3542	0.34	267.01
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.2986	0.34	91.31	7.3185	0.35	268.71
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.2723	0.35	89.59	7.2592	0.36	270.41
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.2510	0.35	88.00	7.2308	0.37	272.01
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.2412	0.36	86.39	7.2265	0.38	273.63
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.2268	0.37	84.81	7.2015	0.39	275.17
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.2169	0.38	83.27	7.1820	0.40	276.73
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.1978	0.40	81.74	7.1532	0.42	278.27
18	7.5812	0.32	152.29	7.5694	0.33	207.83	64	7.2113	0.41	80.19	7.1685	0.44	279.79
20	7.5592	0.31	140.55	7.5809	0.32	219.52	66	7.2207	0.43	78.69	7.1710	0.46	281.30
22	7.5417	0.32	132.70	7.5661	0.33	227.25	68	7.2484	0.46	77.16	7.1757	0.50	282.92
24	7.5206	0.33	126.63	7.5602	0.32	233.54	70	7.2001	0.49	75.67	7.0476	0.54	284.38
26	7.5019	0.32	121.68	7.5582	0.31	238.35	72	7.1353	0.54	74.09	6.9968	0.59	285.92
28	7.4839	0.33	117.53	7.5577	0.33	242.49	74	7.1030	0.59	72.55	6.8850	N/A	287.46
30	7.4677	0.31	113.95	7.5545	0.32	246.06	76	7.0055	N/A	70.95	6.8148	N/A	289.02
32	7.4680	0.34	110.82	7.5214	0.34	249.28	78	7.0409	N/A	69.34	6.7179	N/A	290.64
34	7.4585	0.31	107.89	7.4642	0.32	252.08	80	7.0719	N/A	67.72	6.7437	N/A	292.26
36	7.4262	0.32	105.33	7.4691	0.35	254.65	82	7.0658	N/A	66.00	6.6229	N/A	293.87
38	7.4175	0.32	102.95	7.4506	0.32	257.06	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.3831	0.35	100.75	7.4354	0.34	259.21	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.3677	0.36	98.69	7.4145	0.33	261.33	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.3367	0.33	96.67	7.3858	0.33	263.31	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

I = reference irradiance (W/m²), beam (B) or global (G)

[1]

- where, G = B * COS(Z) + D,
 - Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.59
Type-A Interpolating Function, u(int) (%)	±0.31
Combined Standard Uncertainty, u(c) (%)	±0.67
Effective degrees of freedom, DF(c)	23755
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.3491	0.55000

† Rnet determination date: 02/28/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.79
Offset Uncertainty, U(off) (%)	+2.8 / -2.3
Expanded Uncertainty, U (%)	+3.6 / -3.1
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31155F3
Calibration Date:	6/19/2023	Due Date:	6/19/2024
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	10/01/2022	10/01/2023
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/23/2023	04/23/2024
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/23/2023	04/23/2024
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/03/2023	02/03/2025
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/03/2023	02/03/2025
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 32309F3	03/31/2022	03/31/2027

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

Calibration Results 31155F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win σ * Tc^4
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			ΡM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.6860	0.37	94.79	7.6698	0.33	265.19
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.6716	0.33	93.04	7.6351	0.34	267.01
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.6609	0.34	91.31	7.5985	0.35	268.71
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.6369	0.35	89.59	7.5371	0.36	270.41
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.6175	0.35	88.00	7.5232	0.36	272.01
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.6157	0.36	86.39	7.5175	0.37	273.63
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.5980	0.37	84.81	7.4988	0.38	275.17
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.5959	0.38	83.27	7.4827	0.40	276.73
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.5719	0.39	81.74	7.4584	0.41	278.27
18	7.8479	0.32	152.29	7.8383	0.33	207.83	64	7.5819	0.41	80.19	7.4446	0.43	279.79
20	7.8289	0.31	140.55	7.8497	0.32	219.52	66	7.5930	0.43	78.69	7.4462	0.46	281.30
22	7.8133	0.31	132.70	7.8296	0.33	227.25	68	7.6067	0.45	77.16	7.4433	0.49	282.92
24	7.7980	0.33	126.63	7.8183	0.32	233.54	70	7.6109	0.49	75.67	7.3906	0.53	284.38
26	7.7901	0.32	121.68	7.8180	0.31	238.35	72	7.5575	0.53	74.09	7.2504	0.58	285.92
28	7.7711	0.33	117.53	7.8172	0.32	242.49	74	7.5359	0.58	72.55	7.1361	N/A	287.46
30	7.7593	0.31	113.95	7.8159	0.32	246.06	76	7.4425	N/A	70.95	7.0843	N/A	289.02
32	7.7632	0.34	110.82	7.7854	0.34	249.28	78	7.4924	N/A	69.34	7.0602	N/A	290.64
34	7.7641	0.31	107.89	7.7337	0.32	252.08	80	7.5314	N/A	67.72	7.1313	N/A	292.26
36	7.7367	0.31	105.33	7.7355	0.34	254.65	82	7.5362	N/A	66.00	6.9534	N/A	293.87
38	7.7316	0.32	102.95	7.7210	0.32	257.06	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.7080	0.35	100.75	7.7117	0.34	259.21	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.6982	0.36	98.69	7.6886	0.33	261.33	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.6801	0.33	96.67	7.6694	0.33	263.31	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

• AM × PM

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.58
Type-A Interpolating Function, u(int) (%)	±0.30
Combined Standard Uncertainty, u(c) (%)	±0.66
Effective degrees of freedom, DF(c)	25287
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.6684	0.54000

† Rnet determination date: 02/28/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.78
Offset Uncertainty, U(off) (%)	+1.9 / -2.4
Expanded Uncertainty, U (%)	+2.7 / -3.2
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31156F3
Calibration Date:	6/19/2023	Due Date:	6/19/2024
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type Instrument Calibration Date Calibration	
	Due Date
Beam Irradiance † Eppley Absolute Cavity Radiometer Model HF, S/N 29219 10/01/2022 10/01.	2023
Diffuse Irradiance † Hukseflux Pyranometer Model SR25, S/N 2541 04/23/2023 04/23	2024
Diffuse Irradiance † Hukseflux Pyranometer Model SR25, S/N 2542 04/23/2023 04/23	2024
Data Acquisition NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998 02/03/2023 02/03	2025
Data Acquisition NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999 02/03/2023 02/03	2025
Infrared Irradiance ‡ Eppley Downwelling Pyrgeometer Model PIR, S/N 32309F3 03/31/2022 03/31	2027

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

Calibration Results 31156F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- *Wnet* = effective net infrared measured by pyrgeometer (W/m^2),
 - = Win Wout = Win σ * Tc^4
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.6451	0.38	94.79	7.6610	0.34	265.19
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.6313	0.34	93.04	7.6337	0.34	267.01
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.6181	0.34	91.31	7.5988	0.35	268.71
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.5887	0.35	89.59	7.5400	0.36	270.41
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.5650	0.35	88.00	7.5246	0.37	272.01
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.5558	0.36	86.39	7.5198	0.38	273.63
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.5294	0.37	84.81	7.4975	0.39	275.17
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.5208	0.38	83.27	7.4778	0.40	276.73
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.4956	0.39	81.74	7.4537	0.42	278.27
18	7.8271	0.32	152.29	7.8198	0.33	207.83	64	7.5072	0.41	80.19	7.4582	0.44	279.79
20	7.8064	0.31	140.55	7.8334	0.32	219.52	66	7.5074	0.43	78.69	7.4544	0.46	281.30
22	7.7887	0.32	132.70	7.8148	0.33	227.25	68	7.5016	0.46	77.16	7.4567	0.50	282.92
24	7.7707	0.33	126.63	7.8063	0.32	233.54	70	7.4527	0.49	75.67	7.3644	0.53	284.38
26	7.7589	0.32	121.68	7.8071	0.31	238.35	72	7.4125	0.53	74.09	7.2621	0.58	285.92
28	7.7404	0.33	117.53	7.8082	0.32	242.49	74	7.3767	0.59	72.55	7.1490	N/A	287.46
30	7.7256	0.31	113.95	7.8073	0.32	246.06	76	7.2711	N/A	70.95	7.0919	N/A	289.02
32	7.7334	0.34	110.82	7.7785	0.34	249.28	78	7.3004	N/A	69.34	7.0444	N/A	290.64
34	7.7271	0.31	107.89	7.7210	0.32	252.08	80	7.2988	N/A	67.72	7.1368	N/A	292.26
36	7.6983	0.32	105.33	7.7220	0.34	254.65	82	7.2171	N/A	66.00	6.9585	N/A	293.87
38	7.6942	0.32	102.95	7.7083	0.32	257.06	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.6692	0.35	100.75	7.7000	0.34	259.21	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.6594	0.36	98.69	7.6819	0.33	261.33	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.6385	0.33	96.67	7.6607	0.33	263.31	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- I = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.59
Type-A Interpolating Function, u(int) (%)	±0.31
Combined Standard Uncertainty, u(c) (%)	±0.66
Effective degrees of freedom, DF(c)	23480
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.6425	0.56000

† Rnet determination date: 02/28/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.78
Offset Uncertainty, U(off) (%)	+2.2 / -2.2
Expanded Uncertainty, U (%)	+2.9 / -2.9
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31157F3
Calibration Date:	6/19/2023	Due Date:	6/19/2024
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	10/01/2022	10/01/2023
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/23/2023	04/23/2024
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/23/2023	04/23/2024
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/03/2023	02/03/2025
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/03/2023	02/03/2025
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 32309F3	03/31/2022	03/31/2027

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

Calibration Results 31157F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- *Wnet* = effective net infrared measured by pyrgeometer (W/m^2),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.6113	0.38	94.79	7.5531	0.34	265.19
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.5909	0.34	93.04	7.5207	0.34	267.01
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.5766	0.34	91.31	7.4823	0.35	268.71
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.5585	0.35	89.59	7.4277	0.36	270.41
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.5425	0.35	88.00	7.4061	0.37	272.01
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.5414	0.36	86.39	7.3985	0.38	273.63
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.5278	0.37	84.81	7.3732	0.39	275.17
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.5253	0.38	83.27	7.3450	0.40	276.73
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.5108	0.39	81.74	7.3216	0.42	278.27
18	7.7740	0.32	152.29	7.7539	0.33	207.83	64	7.5356	0.41	80.19	7.3312	0.44	279.79
20	7.7583	0.31	140.55	7.7600	0.32	219.52	66	7.5538	0.43	78.69	7.3382	0.46	281.30
22	7.7443	0.32	132.70	7.7382	0.33	227.25	68	7.5784	0.46	77.16	7.3134	0.50	282.92
24	7.7295	0.33	126.63	7.7271	0.32	233.54	70	7.5589	0.49	75.67	7.1806	0.54	284.38
26	7.7213	0.32	121.68	7.7252	0.31	238.35	72	7.5243	0.53	74.09	7.1322	0.59	285.92
28	7.7063	0.33	117.53	7.7199	0.33	242.49	74	7.5098	0.59	72.55	7.0229	N/A	287.46
30	7.6996	0.31	113.86	7.7163	0.32	246.06	76	7.4394	N/A	70.95	6.9671	N/A	289.02
32	7.7016	0.34	110.82	7.6822	0.34	249.28	78	7.5284	N/A	69.34	6.8704	N/A	290.64
34	7.7035	0.31	107.89	7.6264	0.32	252.08	80	7.5979	N/A	67.72	6.9369	N/A	292.26
36	7.6764	0.32	105.33	7.6294	0.34	254.65	82	7.6549	N/A	66.00	6.7079	N/A	293.87
38	7.6728	0.32	102.95	7.6146	0.32	257.06	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.6481	0.35	100.75	7.6026	0.34	259.21	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.6361	0.36	98.69	7.5787	0.33	261.33	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.6083	0.33	96.67	7.5585	0.33	263.31	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

I = reference irradiance (W/m²), beam (B) or global (G)

- where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.59
Type-A Interpolating Function, u(int) (%)	±0.31
Combined Standard Uncertainty, u(c) (%)	±0.67
Effective degrees of freedom, DF(c)	22246
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.5745	0.56000

† Rnet determination date: 02/28/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.79
Offset Uncertainty, U(off) (%)	+1.9 / -3.0
Expanded Uncertainty, U (%)	+2.7 / -3.8
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Short Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	sNIP	Serial Number:	37947E6
Calibration Date:	6/19/2023	Due Date:	6/19/2024
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°

2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	10/01/2022	10/01/2023
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/23/2023	04/23/2024
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/23/2023	04/23/2024
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/03/2023	02/03/2025
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/03/2023	02/03/2025

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 37947E6 Eppley sNIP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),

= Win - Wout = Win - $\sigma * Tc^4$

where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

where, G = B * COS(Z) + D,

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			РM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.7965	0.30	94.82	8.7905	0.29	265.16
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.8035	0.29	93.02	8.8073	0.29	266.98
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.8016	0.29	91.28	8.8052	0.29	268.73
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.8055	0.29	89.62	8.7964	0.29	270.38
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.8024	0.29	87.97	8.7906	0.29	272.03
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.7964	0.29	86.36	8.7961	0.29	273.61
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.7970	0.29	84.83	8.8001	0.29	275.19
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.7918	0.29	83.29	8.8025	0.30	276.74
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.7873	0.29	81.71	8.7918	0.30	278.29
18	8.7854	0.30	152.34	8.7925	0.31	208.64	64	8.7863	0.30	80.21	8.8063	0.30	279.81
20	8.7753	0.30	140.63	8.7895	0.32	219.47	66	8.7800	0.30	78.67	8.7968	0.30	281.32
22	8.7722	0.28	132.63	8.7897	0.31	227.35	68	8.7753	0.30	77.18	8.8067	0.31	282.90
24	8.7760	0.31	126.57	8.7825	0.29	233.39	70	8.7722	0.30	75.64	8.8010	0.31	284.36
26	8.7701	0.29	121.62	8.7866	0.29	238.21	72	8.7693	0.30	74.11	8.7970	0.31	285.90
28	8.7865	0.29	117.47	8.7891	0.31	242.44	74	8.7750	0.31	72.57	8.7661	N/A	287.48
30	8.7761	0.30	113.99	8.7913	0.32	246.02	76	8.7672	N/A	70.97	8.7495	N/A	289.04
32	8.7841	0.30	110.85	8.8000	0.32	249.24	78	8.7645	N/A	69.36	8.7273	N/A	290.62
34	8.7863	0.31	107.92	8.7886	0.31	252.18	80	8.7691	N/A	67.70	8.7413	N/A	292.32
36	8.7710	0.30	105.36	8.7942	0.29	254.62	82	8.8138	N/A	65.98	8.7215	N/A	293.85
38	8.7832	0.29	102.98	8.7951	0.29	257.03	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.7722	0.30	100.71	8.7965	0.30	259.29	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.7762	0.29	98.66	8.8001	0.29	261.30	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.7670	0.29	96.70	8.7929	0.29	263.33	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.32
Type-A Interpolating Function, u(int) (%)	±0.13
Combined Standard Uncertainty, $u(c)$ (%)	±0.35
Effective degrees of freedom, DF(c)	49497
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.68
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.7791	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.62		
Offset Uncertainty, U(off) (%)	+0.32 / -0.14		
Expanded Uncertainty, U (%)	+0.94 / -0.76		
Effective degrees of freedom, DF	+Inf		
Coverage factor, k	1.96		
Valid zenith angle range	30.0° to 60.0°		

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyrheliometer	Manufacturer:	Hukseflux
Model:	DR20-A1-T2	Serial Number:	65089
Calibration Date:	6/19/2023	Due Date:	6/19/2024
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	10/01/2022	10/01/2023
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/23/2023	04/23/2024
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/23/2023	04/23/2024
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/03/2023	02/03/2025
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/03/2023	02/03/2025

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 65089 Hukseflux DR20-A1-T2

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	18.620	0.29	94.82	18.663	0.29	265.17
2	N/A	N/A	N/A	N/A	N/A	N/A	48	18.637	0.29	93.02	18.636	0.32	266.98
4	N/A	N/A	N/A	N/A	N/A	N/A	50	18.665	0.29	91.28	18.630	0.30	268.73
6	N/A	N/A	N/A	N/A	N/A	N/A	52	18.655	0.29	89.62	18.673	0.29	270.39
8	N/A	N/A	N/A	N/A	N/A	N/A	54	18.644	0.29	87.97	18.681	0.29	272.04
10	N/A	N/A	N/A	N/A	N/A	N/A	56	18.648	0.29	86.37	18.696	0.29	273.61
12	N/A	N/A	N/A	N/A	N/A	N/A	58	18.637	0.29	84.84	18.683	0.29	275.19
14	N/A	N/A	N/A	N/A	N/A	N/A	60	18.631	0.29	83.25	18.676	0.29	276.74
16	N/A	N/A	N/A	N/A	N/A	N/A	62	18.632	0.29	81.72	18.692	0.30	278.29
18	18.663	0.28	152.48	18.624	0.29	208.08	64	18.636	0.29	80.22	18.663	0.31	279.80
20	18.658	0.29	140.72	18.619	0.31	219.40	66	18.639	0.30	78.67	18.719	0.30	281.32
22	18.653	0.28	132.63	18.634	0.29	227.36	68	18.647	0.30	77.18	18.699	0.30	282.90
24	18.649	0.29	126.69	18.667	0.31	233.48	70	18.637	0.30	75.64	18.689	0.31	284.36
26	18.644	0.30	121.62	18.690	0.28	238.32	72	18.625	0.30	74.11	18.675	0.31	285.90
28	18.656	0.28	117.48	18.653	0.29	242.51	74	18.622	0.31	72.57	18.697	N/A	287.49
30	18.658	0.29	113.99	18.647	0.28	246.02	76	18.643	N/A	70.97	18.709	N/A	289.04
32	18.626	0.32	110.78	18.618	0.32	249.26	78	18.636	N/A	69.32	18.802	N/A	290.62
34	18.641	0.30	107.93	18.706	0.29	252.04	80	18.679	N/A	67.70	18.808	N/A	292.33
36	18.664	0.29	105.37	18.686	0.29	254.62	82	18.824	N/A	65.98	18.845	N/A	293.89
38	18.641	0.30	102.98	18.680	0.30	257.04	84	N/A	N/A	N/A	N/A	N/A	N/A
40	18.645	0.31	100.72	18.662	0.32	259.29	86	N/A	N/A	N/A	N/A	N/A	N/A
42	18.644	0.29	98.66	18.659	0.30	261.31	88	N/A	N/A	N/A	N/A	N/A	N/A
44	18.679	0.29	96.70	18.675	0.30	263.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- I = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.32
Type-A Interpolating Function, u(int) (%)	±0.14
Combined Standard Uncertainty, $u(c)$ (%)	±0.35
Effective degrees of freedom, DF(c)	47494
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.69
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4.	Calibration	Label	Values
	ounoration	Labor	- uiuoo

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
18.666	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.64
Offset Uncertainty, U(off) (%)	+0.22 / -0.26
Expanded Uncertainty, U (%)	+0.85 / -0.89
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyrheliometer	Manufacturer:	Hukseflux
Model:	DR20-A1-T2	Serial Number:	65090
Calibration Date:	6/19/2023	Due Date:	6/19/2024
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	10/01/2022	10/01/2023
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/23/2023	04/23/2024
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/23/2023	04/23/2024
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/03/2023	02/03/2025
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/03/2023	02/03/2025

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 65090 Hukseflux DR20-A1-T2

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- *Wnet* = effective net infrared measured by pyrgeometer (W/m^2),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	20.146	0.29	94.82	20.211	0.29	265.17
2	N/A	N/A	N/A	N/A	N/A	N/A	48	20.169	0.29	93.02	20.162	0.32	266.98
4	N/A	N/A	N/A	N/A	N/A	N/A	50	20.201	0.29	91.28	20.154	0.30	268.73
6	N/A	N/A	N/A	N/A	N/A	N/A	52	20.187	0.29	89.62	20.204	0.29	270.39
8	N/A	N/A	N/A	N/A	N/A	N/A	54	20.172	0.29	87.97	20.228	0.29	272.04
10	N/A	N/A	N/A	N/A	N/A	N/A	56	20.179	0.29	86.37	20.227	0.29	273.61
12	N/A	N/A	N/A	N/A	N/A	N/A	58	20.169	0.29	84.84	20.213	0.29	275.19
14	N/A	N/A	N/A	N/A	N/A	N/A	60	20.162	0.29	83.25	20.211	0.29	276.74
16	N/A	N/A	N/A	N/A	N/A	N/A	62	20.162	0.29	81.72	20.234	0.30	278.29
18	20.157	0.28	152.48	20.151	0.29	208.08	64	20.167	0.29	80.22	20.187	0.31	279.80
20	20.192	0.29	140.72	20.139	0.31	219.40	66	20.171	0.30	78.67	20.257	0.30	281.32
22	20.183	0.28	132.63	20.161	0.29	227.36	68	20.178	0.30	77.18	20.230	0.30	282.90
24	20.189	0.29	126.69	20.204	0.31	233.48	70	20.170	0.30	75.64	20.204	0.30	284.36
26	20.177	0.30	121.62	20.215	0.28	238.32	72	20.156	0.30	74.11	20.184	0.31	285.90
28	20.183	0.28	117.48	20.175	0.29	242.51	74	20.158	0.31	72.57	20.216	N/A	287.49
30	20.187	0.29	113.99	20.175	0.28	246.02	76	20.177	N/A	70.97	20.243	N/A	289.04
32	20.135	0.32	110.78	20.146	0.32	249.26	78	20.174	N/A	69.32	20.361	N/A	290.62
34	20.167	0.30	107.93	20.242	0.29	252.04	80	20.218	N/A	67.70	20.350	N/A	292.33
36	20.194	0.29	105.37	20.211	0.29	254.62	82	20.354	N/A	65.98	20.404	N/A	293.89
38	20.172	0.30	102.98	20.205	0.30	257.04	84	N/A	N/A	N/A	N/A	N/A	N/A
40	20.177	0.31	100.72	20.192	0.32	259.29	86	N/A	N/A	N/A	N/A	N/A	N/A
42	20.183	0.29	98.66	20.179	0.30	261.31	88	N/A	N/A	N/A	N/A	N/A	N/A
44	20.224	0.29	96.70	20.198	0.30	263.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

I = reference irradiance (W/m²), beam (B) or global (G)

- where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 3. Type-B Standard Uncertainty vs Zenith Angle

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.32
Type-A Interpolating Function, u(int) (%)	±0.17
Combined Standard Uncertainty, $u(c)$ (%)	±0.37
Effective degrees of freedom, DF(c)	23917
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.72
AM Valid zenith angle range	18° to 74°
PM Valid zenith angle range	18° to 72°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4.	Calibration	Label	Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
20.201	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.64
Offset Uncertainty, U(off) (%)	+0.20 / -0.33
Expanded Uncertainty, U (%)	+0.84 / -0.96
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyrheliometer	Manufacturer:	Hukseflux
Model:	DR20-A1-T2	Serial Number:	65091
Calibration Date:	6/19/2023	Due Date:	6/19/2024
Customer:	Craig Webb	Environmental Conditions:	see page 4
Test Dates:	6/19		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	10/01/2022	10/01/2023
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/23/2023	04/23/2024
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/23/2023	04/23/2024
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/03/2023	02/03/2025
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/03/2023	02/03/2025

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Jaemo Yang, and RCC

Afshin M. Andreas, Deputy Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 65091 Hukseflux DR20-A1-T2

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			ΡM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	19.606	0.29	94.82	19.677	0.29	265.17
2	N/A	N/A	N/A	N/A	N/A	N/A	48	19.627	0.29	93.02	19.629	0.32	266.98
4	N/A	N/A	N/A	N/A	N/A	N/A	50	19.660	0.29	91.28	19.627	0.30	268.73
6	N/A	N/A	N/A	N/A	N/A	N/A	52	19.646	0.29	89.62	19.679	0.29	270.39
8	N/A	N/A	N/A	N/A	N/A	N/A	54	19.630	0.29	87.97	19.702	0.29	272.04
10	N/A	N/A	N/A	N/A	N/A	N/A	56	19.637	0.29	86.37	19.700	0.29	273.61
12	N/A	N/A	N/A	N/A	N/A	N/A	58	19.625	0.29	84.84	19.687	0.29	275.19
14	N/A	N/A	N/A	N/A	N/A	N/A	60	19.616	0.29	83.25	19.683	0.29	276.74
16	N/A	N/A	N/A	N/A	N/A	N/A	62	19.614	0.29	81.72	19.711	0.30	278.29
18	19.635	0.28	152.48	19.622	0.29	208.08	64	19.618	0.29	80.22	19.664	0.31	279.80
20	19.665	0.29	140.72	19.623	0.31	219.40	66	19.623	0.30	78.67	19.734	0.30	281.32
22	19.661	0.28	132.63	19.645	0.29	227.36	68	19.630	0.30	77.18	19.710	0.30	282.90
24	19.665	0.29	126.69	19.681	0.31	233.48	70	19.620	0.30	75.64	19.686	0.31	284.36
26	19.651	0.30	121.62	19.690	0.28	238.32	72	19.605	0.30	74.11	19.672	0.31	285.90
28	19.655	0.28	117.48	19.648	0.29	242.51	74	19.609	0.31	72.57	19.706	N/A	287.49
30	19.663	0.29	113.99	19.647	0.28	246.02	76	19.626	N/A	70.97	19.731	N/A	289.04
32	19.614	0.32	110.78	19.619	0.32	249.26	78	19.621	N/A	69.32	19.829	N/A	290.62
34	19.637	0.30	107.93	19.719	0.29	252.04	80	19.662	N/A	67.70	19.815	N/A	292.33
36	19.666	0.29	105.37	19.682	0.29	254.62	82	19.802	N/A	65.98	19.856	N/A	293.89
38	19.644	0.30	102.98	19.678	0.30	257.04	84	N/A	N/A	N/A	N/A	N/A	N/A
40	19.650	0.31	100.72	19.657	0.32	259.29	86	N/A	N/A	N/A	N/A	N/A	N/A
42	19.648	0.29	98.66	19.647	0.30	261.31	88	N/A	N/A	N/A	N/A	N/A	N/A
44	19.688	0.29	96.70	19.672	0.30	263.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

I = reference irradiance (W/m²), beam (B) or global (G)

- where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 3. Type-B Standard Uncertainty vs Zenith Angle

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.32	
Type-A Interpolating Function, u(int) (%)	±0.17	
Combined Standard Uncertainty, $u(c)$ (%)	±0.37	
Effective degrees of freedom, DF(c)	22155	
Coverage factor, k	1.96	
Expanded Uncertainty, U95 (%)	±0.72	
AM Valid zenith angle range	18° to 74°	
PM Valid zenith angle range	18° to 72°	

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
19.668	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

±0.64	
+0.26 / -0.32	
+0.90 / -0.95	
+Inf	
1.96	
30.0° to 60.0°	

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Environmental and Sky Conditions for BORCAL-SW 2023-02

Calibration Facility: Solar Radiation Research Laboratory

Latitude: 39.742°N Longitude: 105.180°W

Elevation: 1828.8 meters AMSL

Time Zone: -7.0

Figure 10. Pressure

Tabla 6 M	Integral	Observations

Observations	Mean	Min	Max
Temperature (°C)	27.48	16.34	32.12
Humidity (%)	19.01	10.51	34.57
Pressure (mBar)	811.4	809.8	812.6
Est. Aerosol Optical Depth (BB)	0.078	0.046	0.563

For other information about the calibration facility visit: <u>https://www.nrel.gov/grid/solar-radiation-research-laboratory.html</u>

Appendix 2 BORCAL Notes

Instrument, Configuration, and Session Notes for the BORCAL

BORCAL Notes

Facility: Solar Radiation Research Laboratory Comments: Avg. Station Pressure & Temperature is for Denver, CO, which is used for the Solar Position Algorithm (SPA).