Broadband Outdoor Radiometer Calibration Shortwave

BORCAL-SW 2020-02

Radiometer Calibration and Characterization

Customer NREL-SRRL-BMS

Organization: NREL Address: BMS, SRRL, Golden, CO 80401 USA Phone: 303-384-6326

Calibration Facility Solar Radiation Research Laboratory

> Latitude: 39.742°N Longitude: 105.180°W Elevation: 1828.8 meters AMSL Time Zone: -7.0

Calibration date 05/04/2020 to 05/05/2020

Report Date December 9, 2021

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Broadband Outdoor Radiometer Calibration Report

Table of contents

Introduction	3
Control Instrument history plots	4
Results summary	5
Appendix 1 Instrument Details	A1-1
Appendix 2 BORCAL Notes	A2-1

Introduction

This report compiles the calibration results from a Broadband Outdoor Radiometer Calibration (BORCAL). The work was accomplished at the Radiometer Calibration Facility shown on the front of this report. The calibration results reported here are traceable to the International System (SI) Units of Measurement.

This report includes these sections:

- Control Instruments a group of instruments included in each BORCAL event that provides a measure of process consistency.
- Results Summary a table of all instruments included in this report summarizing their calibration results and uncertainty.
- Instrument Details the calibration certificates for each instrument.
- Environmental and Sky Conditions meteorological conditions and reference irradiance during the calibration event.

BORCAL Notes or Comments

This report has been revised to accommodate updated responsivities given by the calibration provider of the BORCAL reference irradiance instruments. This report replaces the report with an issue date of May 12, 2020. This update affects all responsivities for the devices under test issued in this report by approximately -0.675%. There will also be a very slightly change in reported uncertainties due the reference irradiance instruments' uncertainties changing as well.

Control Instrument History

Results Summary

	R@45 ¹	CF@45 1	U ²	Rnet ³	
Instrument	(µV/W/m²)	(W/m²/mV)	(%)	$(\mu V/W/m^2)$	Page
010046 Kipp & Zonen CM22	9.3651	106.78	+1.5 / -1.2	0.087000	A1-2
010284-DW-CM3 Kipp & Zonen CM3	17.344	57.657	+1.9 / -2.2	0.40000	A1-5
010995 Kipp & Zonen SP-LITE	75.850	13.184	+5.1 / -3.3	0	A1-8
014261 Kipp & Zonen CM3	22.577	44.293	+1.2 / -2.2	0.40000	A1-11
015189 Kipp & Zonen CM6B	11.069	90.340	+2.0 / -2.5	0.30000	A1-14
0212-2 Yankee TSP-700	3000.1	0.33333	+1.7 / -1.4	0	A1-17
080009 Kipp & Zonen CHP1	7.9207	126.25	+0.83 / -0.75	0	A1-20
080017 Kipp & Zonen CMP22	10.501	95.229	+1.3 / -1.7	0.087000	A1-23
100174 Kipp & Zonen CMP22	9.8524	101.50	+0.88 / -1.1	0.087000	A1-26
1171 Apogee SP-510	53.397	18.728	+2.1 / -4.1	2.5000	A1-29
140043 Kipp & Zonen CMP22	9.0791	110.14	+0.94 / -1.1	0.087000	A1-32
140108 Kipp & Zonen CHP1	8.0747	123.84	+0.78 / -0.70	0	A1-35
140712 Kipp & Zonen CMP11	9.1796	108.94	+1.1 / -2.3	0.20500	A1-38
140713 Kipp & Zonen CMP11	8.6806	115.20	+1.0 / -1.8	0.20500	A1-41
151027 Kipp & Zonen SP-LITE2	69.009	14.491	+2.6 / -2.1	0	A1-44
160430 Kipp & Zonen CMP22	9.8050	101.99	+0.87 / -1.5	0.087000	A1-47
194362 Kipp & Zonen SP-LITE2	72.703	13.755	+2.5 / -2.1	0	A1-50
21096 Eppley 8-48	11.649	85.844	+3.6 / -1.6	0	A1-53
2530 Hukseflux SR25	11.142	89.749	+1.9 / -1.6	0.043000	A1-56
2543 Hukseflux SR25	9.5397	104.83	+1.1 / -1.2	0.043000	A1-59
28402F3 Eppley PSP	6.9486	143.91	+2.0 / -2.0	0.64000	A1-62
31137E6 Eppley NIP	8.4394	118.49	+1.6 / -0.86	0	A1-65
34722 Eppley 8-48	9.7590	102.47	+3.0 / -1.5	0	A1-68
37831F3 Eppley GPP	8.5290	117.25	+1.7 / -2.9	0.15000	A1-71
37839F3 Eppley SPP	8.6353	115.80	+1.5 / -1.7	0.30000	A1-74
37882E6 Eppley sNIP	8.3611	119.60	+1.0 / -0.77	0	A1-77
38924F3 Eppley SPP	7.9068	126.47	+1.8 / -2.4	0.22000	A1-80
40337 Apogee SP-110	181.86	5.4986	+2.0 / -1.8	0	A1-83
9206 Hukseflux DR02	11.020	90.746	+0.80 / -0.74	0	A1-86
970003 Kipp & Zonen SP-LITE	81.550	12.262	+4.7 / -3.4	0	A1-89
A360 Delta-T SPN1	1019.4	0.98097	+8.8 / -5.0	0	A1-92
F14077R EKO MS-802	7.1082	140.68	+1.3 / -2.3	0.18000	A1-95
PY100360 Licor LI200R	10.757	92.960	+1.4 / -1.1	0	A1-98
PY108623 Licor LI200R	9.9311	100.69	+1.8 / -1.5	0	A1-101
PY1750 Licor LI200	13.157	76.007	+1.3 / -1.3	0	A1-104
PY28257 Licor LI200	13.751	72.722	+2.0 / -2.3	0	A1-107
PYHR101 Licor LI201SB	6.0067	166.48	+3.0 / -1.9	0	A1-110
S13071483 EKO MS-602	7.1318	140.22	+1.9 / -4.4	0.30000	A1-113
S13135063 EKO ML-01	40.432	24.733	+1.8 / -0.93	0	A1-116
S13144.085R EKO MS-410	9.3463	106.99	+1.5 / -1.5	0.20000	A1-119
S17096005 EKO MS-80	10.633	94.049	+1.2 / -1.3	0.043000	A1-122
S18015.22 EKO MS-57	6.6728	149.86	+0.78 / -0.70	0	A1-125

Table 1. Results Summary

¹ CF = 1000 / R ² See certificate for valid zenith angle range Note: Environmental Conditions for BORCAL starts on page A1-128. ³ Instrument's Effective Net IR Response

Appendix 1 Instrument Details

Calibration Certificates: 3 pages for each radiometer (4 including Environmental Conditions) Environmental Conditions for BORCAL: Last Page of a Calibration Certificate. Note: This appears only once, at the end of Appendix 1.

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer (Ventilated)	Manufacturer:	Kipp & Zonen
Model:	CM22	Serial Number:	010046
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Infrared Irradiance ‡	Kipp & Zonen Pyrgeometer Model CGR4, S/N 140021	04/02/2019	04/02/2023

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 010046 Kipp & Zonen CM22

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- *V* = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	9.3255	0.31	106.78	9.3930	0.31	252.84
2	N/A	N/A	N/A	N/A	N/A	N/A	48	9.3292	0.33	104.51	9.4011	0.31	255.09
4	N/A	N/A	N/A	N/A	N/A	N/A	50	9.3421	0.32	102.43	9.4034	0.33	257.25
6	N/A	N/A	N/A	N/A	N/A	N/A	52	9.3388	0.32	100.39	9.4154	0.32	259.31
8	N/A	N/A	N/A	N/A	N/A	N/A	54	9.3432	0.35	98.42	9.4209	0.33	261.24
10	N/A	N/A	N/A	N/A	N/A	N/A	56	9.3425	0.37	96.60	9.4413	0.33	263.12
12	N/A	N/A	N/A	N/A	N/A	N/A	58	9.3438	0.36	94.81	9.4244	0.34	264.93
14	N/A	N/A	N/A	N/A	N/A	N/A	60	9.3267	0.35	93.07	9.4412	0.37	266.68
16	N/A	N/A	N/A	N/A	N/A	N/A	62	9.3386	0.35	91.36	9.4220	0.36	268.41
18	N/A	N/A	N/A	N/A	N/A	N/A	64	9.3211	0.37	89.69	9.4495	0.37	270.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	9.2752	0.38	88.05	9.4489	0.38	271.73
22	N/A	N/A	N/A	N/A	N/A	N/A	68	9.3275	0.43	86.39	9.4534	0.40	273.37
24	9.3229	0.31	166.80	9.3349	0.31	192.80	70	9.3310	0.42	84.79	9.4625	0.43	275.00
26	9.3316	0.33	150.95	9.3385	0.31	209.24	72	9.3350	0.45	83.20	9.5000	0.46	276.61
28	9.3126	0.33	140.77	9.3380	0.31	217.98	74	9.3301	0.50	81.62	9.5046	0.50	278.21
30	9.3187	0.32	134.34	9.3465	0.30	224.76	76	9.3158	0.55	80.00	9.5296	0.56	279.80
32	9.3199	0.33	129.28	9.3586	0.32	229.99	78	9.2952	0.62	78.40	9.5608	N/A	281.41
34	9.3303	0.33	124.77	9.3620	0.33	234.46	80	9.4253	N/A	76.76	9.5674	N/A	283.06
36	9.3320	0.31	121.03	9.3656	0.31	238.43	82	N/A	N/A	N/A	9.6327	N/A	284.71
38	9.3257	0.32	117.59	9.3762	0.31	241.85	84	N/A	N/A	N/A	9.8036	N/A	286.40
40	9.3273	0.31	114.53	9.3788	0.34	245.02	86	N/A	N/A	N/A	N/A	N/A	N/A
42	9.3221	0.32	111.70	9.3704	0.32	247.83	88	N/A	N/A	N/A	N/A	N/A	N/A
44	9.3255	0.32	109.17	9.3968	0.31	250.47	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

I = reference irradiance (W/m²), beam (B) or global (G) where, G = B * COS(Z) + D,

- Z = zenith angle (degrees),
- D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.62
Type-A Interpolating Function, u(int) (%)	±0.19
Combined Standard Uncertainty, $u(c)$ (%)	±0.65
Effective degrees of freedom, DF(c)	169568
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
9,3651	0.087000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.72
Offset Uncertainty, U(off) (%)	+0.81 / -0.50
Expanded Uncertainty, U (%)	+1.5 / -1.2
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	Kipp & Zonen
Model:	СМЗ	Serial Number:	010284-DW-CM3
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Instrument	Calibration Date	Calibration Due Date
Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	04/16/2018	04/16/2022
	Instrument Eppley Absolute Cavity Radiometer Model HF, S/N 29219 Hukseflux Pyranometer Model SR25, S/N 2541 Hukseflux Pyranometer Model SR25, S/N 2542 NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998 NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999 Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	InstrumentCalibration DateEppley Absolute Cavity Radiometer Model HF, S/N 2921909/27/2019Hukseflux Pyranometer Model SR25, S/N 254104/17/2020Hukseflux Pyranometer Model SR25, S/N 254204/17/2020NREL Data Acquisition System Model RAP-DAQ, S/N 2005-99802/14/2019NREL Data Acquisition System Model RAP-DAQ, S/N 2005-99902/14/2019Kipp & Zonen Pyrgeometer Model CG4, S/N FT00204/16/2018

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

± Through the World Infrared Standard Group (WISG)

Calibration Results 010284-DW-CM3 Kipp & Zonen CM3

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Z =zenith angle (degrees),

I = reference irradiance (W/m²), beam (B) or global (G)

Figure 2. Responsivity vs Local Standard Time

where, G = B * COS(Z) + D,

D = reference diffuse irradiance (W/m²).

[1]

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			ΡM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	17.489	0.33	106.78	17.144	0.31	252.83
2	N/A	N/A	N/A	N/A	N/A	N/A	48	17.547	0.33	104.56	17.182	0.31	255.09
4	N/A	N/A	N/A	N/A	N/A	N/A	50	17.476	0.33	102.42	17.140	0.32	257.24
6	N/A	N/A	N/A	N/A	N/A	N/A	52	17.464	0.37	100.42	17.144	0.32	259.25
8	N/A	N/A	N/A	N/A	N/A	N/A	54	17.404	0.35	98.46	17.147	0.33	261.24
10	N/A	N/A	N/A	N/A	N/A	N/A	56	17.410	0.36	96.59	17.163	0.34	263.11
12	N/A	N/A	N/A	N/A	N/A	N/A	58	17.355	0.34	94.81	17.115	0.34	264.92
14	N/A	N/A	N/A	N/A	N/A	N/A	60	17.354	0.37	93.06	17.089	0.35	266.68
16	N/A	N/A	N/A	N/A	N/A	N/A	62	17.407	0.36	91.36	16.941	0.36	268.40
18	N/A	N/A	N/A	N/A	N/A	N/A	64	17.350	0.42	89.69	16.958	0.37	270.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	17.095	0.42	88.04	16.848	0.39	271.68
22	N/A	N/A	N/A	N/A	N/A	N/A	68	17.225	0.41	86.39	16.788	0.41	273.37
24	17.279	0.31	167.00	17.207	0.31	193.21	70	17.256	0.46	84.79	16.783	0.44	275.00
26	17.343	0.30	150.94	17.184	0.33	209.12	72	17.211	0.56	83.19	16.767	0.47	276.61
28	17.271	0.30	140.94	17.259	0.33	217.97	74	17.092	0.59	81.62	16.647	0.52	278.21
30	17.291	0.32	134.56	17.277	0.35	224.64	76	17.061	0.57	80.00	16.589	0.58	279.80
32	17.345	0.32	129.13	17.229	0.31	230.09	78	16.901	0.64	78.40	16.502	N/A	281.41
34	17.417	0.31	124.85	17.223	0.33	234.55	80	17.329	N/A	76.80	16.363	N/A	283.06
36	17.463	0.31	121.04	17.204	0.32	238.43	82	N/A	N/A	N/A	16.520	N/A	284.70
38	17.425	0.33	117.59	17.203	0.32	241.92	84	N/A	N/A	N/A	16.498	N/A	286.35
40	17.462	0.34	114.59	17.156	0.30	244.94	86	N/A	N/A	N/A	N/A	N/A	N/A
42	17.432	0.32	111.76	17.085	0.32	247.76	88	N/A	N/A	N/A	N/A	N/A	N/A
44	17.469	0.32	109.23	17.158	0.32	250.40	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.64
Type-A Interpolating Function, u(int) (%)	±0.34
Combined Standard Uncertainty, u(c) (%)	±0.72
Effective degrees of freedom, DF(c)	24271
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.4
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4. Calibration Laber Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
17.344	0.40000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.73
Offset Uncertainty, U(off) (%)	+1.2 / -1.5
Expanded Uncertainty, U (%)	+1.9 / -2.2
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Silicon Pyranometer	Manufacturer:	Kipp & Zonen
Model:	SP-LITE	Serial Number:	010995
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 010995 Kipp & Zonen SP-LITE

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	77.163	0.31	106.77	74.408	0.32	252.82
2	N/A	N/A	N/A	N/A	N/A	N/A	48	77.562	0.31	104.55	74.475	0.32	255.08
4	N/A	N/A	N/A	N/A	N/A	N/A	50	77.942	0.33	102.41	74.366	0.33	257.23
6	N/A	N/A	N/A	N/A	N/A	N/A	52	78.197	0.35	100.38	74.333	0.32	259.29
8	N/A	N/A	N/A	N/A	N/A	N/A	54	78.570	0.34	98.45	74.282	0.32	261.22
10	N/A	N/A	N/A	N/A	N/A	N/A	56	78.847	0.36	96.58	74.320	0.33	263.10
12	N/A	N/A	N/A	N/A	N/A	N/A	58	79.038	0.38	94.75	73.952	0.33	264.91
14	N/A	N/A	N/A	N/A	N/A	N/A	60	79.176	0.34	93.05	73.873	0.34	266.67
16	N/A	N/A	N/A	N/A	N/A	N/A	62	79.551	0.35	91.35	73.483	0.35	268.39
18	N/A	N/A	N/A	N/A	N/A	N/A	64	79.729	0.36	89.68	73.424	0.36	270.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	79.700	0.40	88.03	73.085	0.38	271.72
22	N/A	N/A	N/A	N/A	N/A	N/A	68	80.638	0.39	86.42	72.642	0.40	273.36
24	75.628	0.31	167.16	75.329	0.31	193.01	70	81.025	0.42	84.82	72.230	0.42	274.99
26	76.108	0.32	151.05	75.017	0.31	209.06	72	81.286	0.45	83.18	71.991	0.45	276.60
28	75.682	0.33	140.91	74.898	0.31	218.07	74	81.841	0.49	81.61	71.496	0.49	278.20
30	75.885	0.31	134.42	74.904	0.29	224.61	76	82.521	0.54	79.99	71.129	0.55	279.83
32	76.001	0.30	129.21	74.898	0.32	230.02	78	83.601	0.61	78.39	71.136	N/A	281.44
34	76.290	0.31	124.83	74.819	0.32	234.61	80	86.858	N/A	76.74	71.688	N/A	283.09
36	76.327	0.31	121.06	74.664	0.31	238.40	82	N/A	N/A	N/A	73.812	N/A	284.73
38	76.355	0.31	117.65	74.724	0.31	241.82	84	N/A	N/A	N/A	77.895	N/A	286.39
40	76.675	0.32	114.46	74.651	0.33	244.99	86	N/A	N/A	N/A	N/A	N/A	N/A
42	76.815	0.31	111.82	74.413	0.33	247.81	88	N/A	N/A	N/A	N/A	N/A	N/A
44	76.999	0.30	109.15	74.538	0.36	250.45	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- I = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,
 - Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

14:00

16:00

18:00

20:00

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.61		
Type-A Interpolating Function, u(int) (%)	±0.26		
Combined Standard Uncertainty, u(c) (%)	±0.66		
Effective degrees of freedom, DF(c)	45857		
Coverage factor, k	1.96		
Expanded Uncertainty, U95 (%)	±1.3		
AM Valid zenith angle range	24° to 78°		
PM Valid zenith angle range	24° to 76°		

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
75.850	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.74
Offset Uncertainty, U(off) (%)	+4.4 / -2.6
Expanded Uncertainty, U (%)	+5.1 / -3.3
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	Kipp & Zonen
Model:	СМЗ	Serial Number:	014261
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Infrared Irradiance ‡	Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	04/16/2018	04/16/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 014261 Kipp & Zonen CM3

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	22.681	0.33	106.78	22.403	0.31	252.83
2	N/A	N/A	N/A	N/A	N/A	N/A	48	22.612	0.33	104.56	22.453	0.31	255.09
4	N/A	N/A	N/A	N/A	N/A	N/A	50	22.338	0.33	102.42	22.459	0.32	257.24
6	N/A	N/A	N/A	N/A	N/A	N/A	52	22.264	0.37	100.42	22.459	0.32	259.25
8	N/A	N/A	N/A	N/A	N/A	N/A	54	22.236	0.34	98.46	22.458	0.33	261.24
10	N/A	N/A	N/A	N/A	N/A	N/A	56	22.305	0.35	96.59	22.481	0.33	263.11
12	N/A	N/A	N/A	N/A	N/A	N/A	58	22.285	0.34	94.81	22.440	0.34	264.92
14	N/A	N/A	N/A	N/A	N/A	N/A	60	22.361	0.37	93.06	22.472	0.35	266.68
16	N/A	N/A	N/A	N/A	N/A	N/A	62	22.478	0.36	91.36	22.452	0.36	268.40
18	N/A	N/A	N/A	N/A	N/A	N/A	64	22.285	0.42	89.69	22.498	0.37	270.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	22.045	0.41	88.04	22.507	0.39	271.68
22	N/A	N/A	N/A	N/A	N/A	N/A	68	22.328	0.40	86.39	22.549	0.40	273.37
24	22.459	0.31	167.00	22.366	0.31	193.21	70	22.589	0.45	84.79	22.641	0.43	275.00
26	22.571	0.30	150.94	22.362	0.32	209.12	72	22.691	0.55	83.19	22.731	0.46	276.61
28	22.322	0.30	140.94	22.392	0.33	217.97	74	22.754	0.58	81.62	22.766	0.51	278.21
30	22.382	0.32	134.56	22.399	0.35	224.64	76	22.809	0.56	80.00	22.822	0.57	279.80
32	22.473	0.32	129.13	22.375	0.31	230.09	78	22.645	0.63	78.40	22.864	N/A	281.41
34	22.490	0.31	124.85	22.393	0.33	234.55	80	23.223	N/A	76.80	22.935	N/A	283.06
36	22.568	0.31	121.04	22.411	0.32	238.43	82	N/A	N/A	N/A	23.435	N/A	284.70
38	22.607	0.33	117.59	22.446	0.31	241.92	84	N/A	N/A	N/A	23.898	N/A	286.35
40	22.670	0.34	114.59	22.381	0.30	244.94	86	N/A	N/A	N/A	N/A	N/A	N/A
42	22.629	0.32	111.76	22.370	0.32	247.76	88	N/A	N/A	N/A	N/A	N/A	N/A
44	22.642	0.32	109.23	22.412	0.32	250.40	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- I = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.63
Type-A Interpolating Function, u(int) (%)	±0.35
Combined Standard Uncertainty, u(c) (%)	±0.72
Effective degrees of freedom, DF(c)	20128
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.4
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than $R@45^\circ.~$ Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
22.577	0.40000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.72
Offset Uncertainty, U(off) (%)	+0.46 / -1.5
Expanded Uncertainty, U (%)	+1.2 / -2.2
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	Kipp & Zonen
Model:	CM6B	Serial Number:	015189
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Infrared Irradiance ‡	Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	04/16/2018	04/16/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 015189 Kipp & Zonen CM6B

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$

I = reference irradiance (W/m²), beam (B) or global (G)

[1]

- where, G = B * COS(Z) + D,
 - Z =zenith angle (degrees), D = reference diffuse irradiance (W/m²).
- where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. I	Instrument Res	ponsivity (R) a	and Calibration	Type-B Standard	Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	11.021	0.31	106.78	11.103	0.33	252.84
2	N/A	N/A	N/A	N/A	N/A	N/A	48	11.044	0.33	104.57	11.127	0.33	255.09
4	N/A	N/A	N/A	N/A	N/A	N/A	50	10.908	0.38	102.46	11.146	0.32	257.25
6	N/A	N/A	N/A	N/A	N/A	N/A	52	10.900	0.36	100.39	11.144	0.34	259.26
8	N/A	N/A	N/A	N/A	N/A	N/A	54	10.881	0.33	98.47	11.159	0.35	261.24
10	N/A	N/A	N/A	N/A	N/A	N/A	56	10.896	0.36	96.60	11.177	0.36	263.12
12	N/A	N/A	N/A	N/A	N/A	N/A	58	10.904	0.39	94.81	11.179	0.35	264.93
14	N/A	N/A	N/A	N/A	N/A	N/A	60	10.947	0.35	93.06	11.207	0.35	266.69
16	N/A	N/A	N/A	N/A	N/A	N/A	62	10.980	0.36	91.36	11.201	0.37	268.41
18	N/A	N/A	N/A	N/A	N/A	N/A	64	10.908	0.43	89.69	11.221	0.38	270.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	10.853	0.39	88.05	11.225	0.40	271.69
22	N/A	N/A	N/A	N/A	N/A	N/A	68	10.948	0.44	86.39	11.253	0.42	273.37
24	11.023	0.32	167.23	11.026	0.32	193.22	70	11.018	0.47	84.79	11.286	0.44	275.00
26	11.051	0.31	150.95	11.039	0.32	209.17	72	11.035	0.47	83.20	11.312	0.48	276.61
28	10.963	0.32	140.82	11.058	0.31	217.98	74	11.060	0.52	81.62	11.335	0.52	278.17
30	10.976	0.32	134.42	11.056	0.33	224.65	76	11.075	0.58	80.00	11.367	0.59	279.80
32	10.980	0.33	129.14	11.049	0.30	230.09	78	11.057	0.65	78.40	11.393	N/A	281.42
34	10.999	0.33	124.86	11.068	0.31	234.55	80	11.202	N/A	76.76	11.485	N/A	283.06
36	10.998	0.31	121.03	11.069	0.32	238.43	82	N/A	N/A	N/A	11.719	N/A	284.70
38	11.007	0.32	117.60	11.072	0.32	241.92	84	N/A	N/A	N/A	11.940	N/A	286.36
40	11.016	0.33	114.60	11.074	0.35	244.95	86	N/A	N/A	N/A	N/A	N/A	N/A
42	11.010	0.31	111.77	11.091	0.31	247.76	88	N/A	N/A	N/A	N/A	N/A	N/A
44	11.008	0.31	109.25	11.104	0.32	250.40	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.65	
Type-A Interpolating Function, u(int) (%)	±0.18	
Combined Standard Uncertainty, u(c) (%)	±0.68	
Effective degrees of freedom, DF(c)	218287	
Coverage factor, k	1.96	
Expanded Uncertainty, U95 (%)	±1.3	
AM Valid zenith angle range	24° to 78°	
PM Valid zenith angle range	24° to 76°	

± An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
11.069	0.30000

+ Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

±0.76
+1.2 / -1.7
+2.0 / -2.5
+Inf
1.96
30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer (Ventilated)	Manufacturer:	Yankee
Model:	TSP-700	Serial Number:	0212-2
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 0212-2 Yankee TSP-700

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

[1]

Figure 2. Responsivity vs Local Standard Time

Table 2	Instrument Responsivity	(R) and Calibratio	n Type-B Standard	Uncertainty u(B)
	manument responsivity		in Type-D Standard	i oncertainty, u(D)

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	2982.9	0.31	106.78	3007.2	0.31	252.83
2	N/A	N/A	N/A	N/A	N/A	N/A	48	2986.9	0.31	104.53	3015.9	0.31	255.09
4	N/A	N/A	N/A	N/A	N/A	N/A	50	2999.7	0.33	102.42	3014.3	0.33	257.24
6	N/A	N/A	N/A	N/A	N/A	N/A	52	2999.8	0.35	100.39	3014.2	0.32	259.30
8	N/A	N/A	N/A	N/A	N/A	N/A	54	3009.2	0.34	98.46	3015.5	0.34	261.23
10	N/A	N/A	N/A	N/A	N/A	N/A	56	3014.8	0.34	96.59	3028.9	0.33	263.11
12	N/A	N/A	N/A	N/A	N/A	N/A	58	3024.3	0.39	94.80	3020.2	0.33	264.92
14	N/A	N/A	N/A	N/A	N/A	N/A	60	3029.4	0.34	93.06	3019.5	0.34	266.68
16	N/A	N/A	N/A	N/A	N/A	N/A	62	3031.2	0.35	91.36	3015.3	0.35	268.40
18	N/A	N/A	N/A	N/A	N/A	N/A	64	3015.6	0.36	89.69	3030.9	0.36	270.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	3000.7	0.42	88.04	3029.8	0.38	271.73
22	N/A	N/A	N/A	N/A	N/A	N/A	68	3049.5	0.39	86.43	3028.3	0.40	273.37
24	2982.4	0.31	167.09	2986.7	0.30	193.04	70	3067.4	0.42	84.79	3029.8	0.42	274.99
26	2974.9	0.30	151.05	2981.9	0.31	209.11	72	3060.4	0.45	83.19	3051.0	0.49	276.61
28	2983.1	0.33	140.76	2977.1	0.31	217.97	74	3071.8	0.49	81.61	3059.0	0.49	278.20
30	2984.1	0.33	134.40	2992.1	0.30	224.64	76	3065.7	0.54	80.00	3066.3	0.55	279.80
32	2981.9	0.31	129.23	2997.6	0.33	229.98	78	3086.8	0.75	78.39	3088.5	N/A	281.45
34	2987.3	0.32	124.85	2994.5	0.34	234.45	80	3226.4	N/A	76.75	3095.6	N/A	283.05
36	2984.4	0.31	121.02	2992.7	0.31	238.34	82	N/A	N/A	N/A	3140.0	N/A	284.70
38	2979.8	0.33	117.58	3004.0	0.31	241.76	84	N/A	N/A	N/A	3222.8	N/A	286.39
40	2981.8	0.33	114.47	3007.0	0.31	245.01	86	N/A	N/A	N/A	N/A	N/A	N/A
42	2981.1	0.33	111.76	2997.0	0.32	247.82	88	N/A	N/A	N/A	N/A	N/A	N/A
44	2984.8	0.32	109.17	3011.0	0.33	250.46	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.75
Type-A Interpolating Function, u(int) (%)	±0.35
Combined Standard Uncertainty, $u(c)$ (%)	±0.83
Effective degrees of freedom, DF(c)	37479
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.6
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

± An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4.	Calibration	Label	Values
	Cambration	Laber	values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
3000.1	0

+ Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.76
Offset Uncertainty, U(off) (%)	+0.98 / -0.68
Expanded Uncertainty, U (%)	+1.7 / -1.4
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyrheliometer	Manufacturer:	Kipp & Zonen
Model:	CHP1	Serial Number:	080009
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 080009 Kipp & Zonen CHP1

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- *Wnet* = effective net infrared measured by pyrgeometer (W/m^2),

= Win - Wout = Win - σ * Tc^4

where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Tahla 2	Instrument Res	nonsivity (R) an	d Calibration Type-	R Standard Uncortain	tv u(R)
	manumentites	polisivity (it) all	u cambradon rype-	D Stanuaru Shicertain	(y, u(D)

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.9308	0.29	106.76	7.9211	0.29	252.81
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.9252	0.30	104.54	7.9162	0.29	255.07
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.9314	0.30	102.41	7.9167	0.29	257.23
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.9276	0.31	100.37	7.9196	0.29	259.29
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.9311	0.32	98.50	7.9183	0.30	261.27
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.9362	0.30	96.58	7.9114	0.29	263.10
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.9280	0.30	94.79	7.9166	0.29	264.91
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.9271	0.30	93.05	7.9162	0.30	266.71
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.9214	0.31	91.35	7.9175	0.30	268.39
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.9271	0.30	89.68	7.9089	0.30	270.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.9388	0.32	88.03	7.9126	0.30	271.72
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.9255	0.31	86.42	7.9121	0.30	273.36
24	7.9152	0.30	167.15	7.9170	0.30	192.94	70	7.9261	0.30	84.82	7.9109	0.30	274.98
26	7.9267	0.31	151.04	7.9198	0.29	209.08	72	7.9197	0.30	83.18	7.9084	0.31	276.59
28	7.9270	0.31	140.90	7.9225	0.31	218.19	74	7.9237	0.33	81.60	7.9103	0.31	278.20
30	7.9311	0.30	134.49	7.9179	0.32	224.72	76	7.9249	0.31	79.99	7.9092	0.31	279.83
32	7.9312	0.29	129.20	7.9185	0.29	230.05	78	7.9215	0.32	78.38	7.9079	N/A	281.44
34	7.9304	0.30	124.82	7.9195	0.30	234.61	80	7.8998	N/A	76.74	7.9087	N/A	283.09
36	7.9308	0.30	121.03	7.9208	0.31	238.40	82	7.8909	N/A	75.09	7.9080	N/A	284.73
38	7.9356	0.31	117.64	7.9190	0.31	241.90	84	7.9199	N/A	73.42	7.9036	N/A	286.38
40	7.9320	0.31	114.45	7.9172	0.30	244.99	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.9337	0.29	111.81	7.9191	0.30	247.80	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.9312	0.30	109.15	7.9156	0.29	250.44	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.33
Type-A Interpolating Function, u(int) (%)	±0.11
Combined Standard Uncertainty, u(c) (%)	±0.35
Effective degrees of freedom, DF(c)	112168
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.69
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.9207	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.63
Offset Uncertainty, U(off) (%)	+0.20 / -0.12
Expanded Uncertainty, U (%)	+0.83 / -0.75
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer (Ventilated)	Manufacturer:	Kipp & Zonen
Model:	CMP22	Serial Number:	080017
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Infrared Irradiance ‡	Kipp & Zonen Pyrgeometer Model CGR4, S/N 140021	04/02/2019	04/02/2023

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 080017 Kipp & Zonen CMP22

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	10.544	0.31	106.78	10.434	0.31	252.84
2	N/A	N/A	N/A	N/A	N/A	N/A	48	10.541	0.33	104.51	10.427	0.31	255.09
4	N/A	N/A	N/A	N/A	N/A	N/A	50	10.555	0.32	102.43	10.416	0.33	257.25
6	N/A	N/A	N/A	N/A	N/A	N/A	52	10.544	0.32	100.39	10.419	0.32	259.31
8	N/A	N/A	N/A	N/A	N/A	N/A	54	10.547	0.35	98.42	10.417	0.32	261.24
10	N/A	N/A	N/A	N/A	N/A	N/A	56	10.545	0.36	96.60	10.434	0.33	263.12
12	N/A	N/A	N/A	N/A	N/A	N/A	58	10.543	0.35	94.81	10.401	0.34	264.93
14	N/A	N/A	N/A	N/A	N/A	N/A	60	10.516	0.34	93.07	10.400	0.37	266.68
16	N/A	N/A	N/A	N/A	N/A	N/A	62	10.529	0.35	91.36	10.354	0.36	268.41
18	N/A	N/A	N/A	N/A	N/A	N/A	64	10.510	0.37	89.69	10.366	0.37	270.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	10.459	0.38	88.05	10.340	0.38	271.73
22	N/A	N/A	N/A	N/A	N/A	N/A	68	10.493	0.43	86.39	10.317	0.40	273.37
24	10.534	0.31	166.80	10.529	0.31	192.80	70	10.494	0.42	84.79	10.306	0.43	275.00
26	10.554	0.33	150.95	10.519	0.31	209.24	72	10.492	0.45	83.20	10.321	0.46	276.61
28	10.549	0.33	140.77	10.505	0.31	217.98	74	10.496	0.49	81.62	10.287	0.50	278.21
30	10.555	0.32	134.34	10.504	0.30	224.76	76	10.483	0.55	80.00	10.274	0.56	279.80
32	10.554	0.33	129.28	10.505	0.32	229.99	78	10.464	0.62	78.40	10.263	N/A	281.41
34	10.560	0.33	124.77	10.502	0.33	234.46	80	10.583	N/A	76.76	10.241	N/A	283.06
36	10.560	0.31	121.03	10.492	0.31	238.43	82	N/A	N/A	N/A	10.282	N/A	284.71
38	10.550	0.32	117.59	10.492	0.31	241.85	84	N/A	N/A	N/A	10.399	N/A	286.40
40	10.552	0.31	114.53	10.477	0.34	245.02	86	N/A	N/A	N/A	N/A	N/A	N/A
42	10.546	0.32	111.70	10.447	0.32	247.83	88	N/A	N/A	N/A	N/A	N/A	N/A
44	10.546	0.32	109.17	10.456	0.31	250.47	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.62		
Type-A Interpolating Function, u(int) (%)	±0.18		
Combined Standard Uncertainty, $u(c)$ (%)	±0.65		
Effective degrees of freedom, DF(c)	177905		
Coverage factor, k	1.96		
Expanded Uncertainty, U95 (%)	±1.3		
AM Valid zenith angle range	24° to 78°		
PM Valid zenith angle range	24° to 76°		

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
10.501	0.087000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.72
Offset Uncertainty, U(off) (%)	+0.56 / -0.96
Expanded Uncertainty, U (%)	+1.3 / -1.7
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	Kipp & Zonen
Model:	CMP22	Serial Number:	100174
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Instrument	Calibration Date	Calibration Due Date
Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	04/16/2018	04/16/2022
	Instrument Eppley Absolute Cavity Radiometer Model HF, S/N 29219 Hukseflux Pyranometer Model SR25, S/N 2541 Hukseflux Pyranometer Model SR25, S/N 2542 NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998 NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999 Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	InstrumentCalibration DateEppley Absolute Cavity Radiometer Model HF, S/N 2921909/27/2019Hukseflux Pyranometer Model SR25, S/N 254104/17/2020Hukseflux Pyranometer Model SR25, S/N 254204/17/2020NREL Data Acquisition System Model RAP-DAQ, S/N 2005-99802/14/2019NREL Data Acquisition System Model RAP-DAQ, S/N 2005-99902/14/2019Kipp & Zonen Pyrgeometer Model CG4, S/N FT00204/16/2018

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 100174 Kipp & Zonen CMP22

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	9.8572	0.32	106.77	9.8314	0.31	252.83
2	N/A	N/A	N/A	N/A	N/A	N/A	48	9.8592	0.33	104.56	9.8398	0.31	255.08
4	N/A	N/A	N/A	N/A	N/A	N/A	50	9.8364	0.36	102.42	9.8368	0.32	257.24
6	N/A	N/A	N/A	N/A	N/A	N/A	52	9.8328	0.34	100.41	9.8399	0.32	259.30
8	N/A	N/A	N/A	N/A	N/A	N/A	54	9.8256	0.36	98.46	9.8429	0.36	261.23
10	N/A	N/A	N/A	N/A	N/A	N/A	56	9.8413	0.37	96.59	9.8566	0.35	263.11
12	N/A	N/A	N/A	N/A	N/A	N/A	58	9.8417	0.34	94.80	9.8415	0.34	264.92
14	N/A	N/A	N/A	N/A	N/A	N/A	60	9.8437	0.34	93.06	9.8556	0.35	266.68
16	N/A	N/A	N/A	N/A	N/A	N/A	62	9.8575	0.35	91.36	9.8273	0.36	268.40
18	N/A	N/A	N/A	N/A	N/A	N/A	64	9.8338	0.39	89.68	9.8565	0.37	270.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	9.7813	0.41	88.04	9.8563	0.38	271.68
22	N/A	N/A	N/A	N/A	N/A	N/A	68	9.8542	0.40	86.43	9.8661	0.40	273.37
24	9.8435	0.30	166.91	9.8403	0.32	193.10	70	9.8965	0.42	84.78	9.8801	0.43	274.99
26	9.8626	0.30	150.93	9.8339	0.32	209.14	72	9.9094	0.45	83.19	9.9157	0.46	276.60
28	9.8310	0.35	140.83	9.8430	0.32	218.09	74	9.8939	0.54	81.61	9.9210	0.50	278.21
30	9.8425	0.32	134.32	9.8385	0.31	224.63	76	9.8930	0.55	80.00	9.9456	0.56	279.80
32	9.8429	0.31	129.23	9.8361	0.33	230.08	78	9.8506	0.62	78.39	9.9643	N/A	281.41
34	9.8570	0.30	124.85	9.8404	0.32	234.51	80	9.9707	N/A	76.79	9.9644	N/A	283.05
36	9.8673	0.31	121.02	9.8353	0.33	238.42	82	N/A	N/A	N/A	10.033	N/A	284.70
38	9.8558	0.32	117.58	9.8371	0.34	241.91	84	N/A	N/A	N/A	10.103	N/A	286.35
40	9.8640	0.31	114.59	9.8317	0.33	244.94	86	N/A	N/A	N/A	N/A	N/A	N/A
42	9.8492	0.32	111.76	9.8192	0.32	247.75	88	N/A	N/A	N/A	N/A	N/A	N/A
44	9.8539	0.31	109.22	9.8395	0.32	250.35	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- I = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.62
Type-A Interpolating Function, u(int) (%)	±0.18
Combined Standard Uncertainty, $u(c)$ (%)	±0.65
Effective degrees of freedom, DF(c)	197300
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
9.8524	0.087000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.73			
Offset Uncertainty, U(off) (%)	+0.15 / -0.34			
Expanded Uncertainty, U (%)	+0.88 / -1.1			
Effective degrees of freedom, DF	+Inf			
Coverage factor, k	1.96			
Valid zenith angle range	30.0° to 60.0°			

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology., 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Thermopile Pyranometer	Manufacturer:	Apogee
Model:	SP-510	Serial Number:	1171
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Infrared Irradiance ‡	Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	04/16/2018	04/16/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 1171 Apogee SP-510

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- *Wnet* = effective net infrared measured by pyrgeometer (W/m^2),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of radiometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	52.913	0.32	106.80	53.670	0.34	252.85
2	N/A	N/A	N/A	N/A	N/A	N/A	48	52.811	0.36	104.52	53.724	0.36	255.11
4	N/A	N/A	N/A	N/A	N/A	N/A	50	52.536	0.34	102.44	53.646	0.33	257.26
6	N/A	N/A	N/A	N/A	N/A	N/A	52	52.339	0.37	100.40	53.572	0.35	259.32
8	N/A	N/A	N/A	N/A	N/A	N/A	54	52.019	0.40	98.43	53.501	0.36	261.20
10	N/A	N/A	N/A	N/A	N/A	N/A	56	52.024	0.38	96.61	53.516	0.35	263.13
12	N/A	N/A	N/A	N/A	N/A	N/A	58	51.727	0.39	94.82	53.371	0.36	264.94
14	N/A	N/A	N/A	N/A	N/A	N/A	60	51.654	0.42	93.07	53.295	0.37	266.70
16	N/A	N/A	N/A	N/A	N/A	N/A	62	51.520	0.41	91.33	53.141	0.39	268.42
18	N/A	N/A	N/A	N/A	N/A	N/A	64	50.821	0.43	89.65	53.204	0.40	270.07
20	N/A	N/A	N/A	N/A	N/A	N/A	66	50.116	0.43	88.06	53.104	0.42	271.69
22	N/A	N/A	N/A	N/A	N/A	N/A	68	50.654	0.46	86.40	53.053	0.45	273.38
24	54.129	0.32	166.82	54.240	0.33	192.94	70	50.594	0.48	84.80	53.112	0.48	275.01
26	53.986	0.33	150.84	54.179	0.32	209.17	72	50.810	0.52	83.21	53.332	0.52	276.58
28	53.860	0.34	140.76	54.040	0.31	218.11	74	50.975	0.57	81.59	53.798	0.61	278.22
30	53.667	0.33	134.45	54.072	0.33	224.79	76	51.406	0.63	80.01	54.348	0.65	279.81
32	53.703	0.32	129.26	54.098	0.32	230.01	78	52.100	0.72	78.41	55.524	N/A	281.43
34	53.668	0.33	124.79	53.994	0.33	234.48	80	54.926	N/A	76.77	57.096	N/A	283.02
36	53.513	0.32	120.97	53.939	0.31	238.45	82	N/A	N/A	N/A	60.417	N/A	284.67
38	53.370	0.32	117.61	53.946	0.31	241.85	84	N/A	N/A	N/A	65.262	N/A	286.41
40	53.270	0.33	114.54	53.834	0.33	244.96	86	N/A	N/A	N/A	N/A	N/A	N/A
42	53.194	0.33	111.71	53.780	0.32	247.84	88	N/A	N/A	N/A	N/A	N/A	N/A
44	53.020	0.32	109.19	53.873	0.34	250.39	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

I = reference irradiance (W/m²), beam (B) or global (G) where, G = B * COS(Z) + D,

- Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.72
Type-A Interpolating Function, u(int) (%)	±0.46
Combined Standard Uncertainty, $u(c)$ (%)	±0.85
Effective degrees of freedom, DF(c)	13593
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.7
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

± An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
53 397	2 5000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.81
Offset Uncertainty, U(off) (%)	+1.3 / -3.3
Expanded Uncertainty, U (%)	+2.1 / -4.1
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	Kipp & Zonen
Model:	CMP22	Serial Number:	140043
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Instrument	Calibration Date	Calibration Due Date
Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	04/16/2018	04/16/2022
	Instrument Eppley Absolute Cavity Radiometer Model HF, S/N 29219 Hukseflux Pyranometer Model SR25, S/N 2541 Hukseflux Pyranometer Model SR25, S/N 2542 NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998 NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999 Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	InstrumentCalibration DateEppley Absolute Cavity Radiometer Model HF, S/N 2921909/27/2019Hukseflux Pyranometer Model SR25, S/N 254104/17/2020Hukseflux Pyranometer Model SR25, S/N 254204/17/2020NREL Data Acquisition System Model RAP-DAQ, S/N 2005-99802/14/2019NREL Data Acquisition System Model RAP-DAQ, S/N 2005-99902/14/2019Kipp & Zonen Pyrgeometer Model CG4, S/N FT00204/16/2018

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 140043 Kipp & Zonen CMP22

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2.	Instrument Responsivity	(R) and Calibration	Type-B Standard Uncertainty	. u(B)

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	9.0791	0.32	106.77	9.0621	0.31	252.83
2	N/A	N/A	N/A	N/A	N/A	N/A	48	9.0827	0.33	104.56	9.0711	0.31	255.08
4	N/A	N/A	N/A	N/A	N/A	N/A	50	9.0842	0.36	102.42	9.0665	0.32	257.24
6	N/A	N/A	N/A	N/A	N/A	N/A	52	9.0804	0.34	100.41	9.0724	0.32	259.30
8	N/A	N/A	N/A	N/A	N/A	N/A	54	9.0756	0.36	98.46	9.0771	0.36	261.23
10	N/A	N/A	N/A	N/A	N/A	N/A	56	9.0805	0.37	96.59	9.0949	0.35	263.11
12	N/A	N/A	N/A	N/A	N/A	N/A	58	9.0737	0.34	94.80	9.0839	0.34	264.92
14	N/A	N/A	N/A	N/A	N/A	N/A	60	9.0659	0.35	93.06	9.0984	0.35	266.68
16	N/A	N/A	N/A	N/A	N/A	N/A	62	9.0763	0.35	91.36	9.0720	0.36	268.40
18	N/A	N/A	N/A	N/A	N/A	N/A	64	9.0541	0.39	89.68	9.1020	0.37	270.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	9.0080	0.41	88.04	9.1017	0.38	271.68
22	N/A	N/A	N/A	N/A	N/A	N/A	68	9.0533	0.40	86.43	9.1080	0.40	273.37
24	9.0738	0.30	166.91	9.0677	0.32	193.10	70	9.0760	0.43	84.78	9.1201	0.43	274.99
26	9.0922	0.30	150.93	9.0589	0.32	209.14	72	9.0748	0.46	83.19	9.1565	0.46	276.60
28	9.0617	0.35	140.83	9.0692	0.32	218.09	74	9.0570	0.54	81.61	9.1562	0.50	278.21
30	9.0727	0.32	134.32	9.0711	0.31	224.63	76	9.0547	0.56	80.00	9.1742	0.56	279.80
32	9.0721	0.31	129.23	9.0684	0.33	230.08	78	9.0066	0.63	78.39	9.1843	N/A	281.41
34	9.0839	0.30	124.85	9.0725	0.32	234.51	80	9.1134	N/A	76.79	9.1717	N/A	283.05
36	9.0930	0.31	121.02	9.0662	0.33	238.42	82	N/A	N/A	N/A	9.2334	N/A	284.70
38	9.0778	0.33	117.58	9.0697	0.34	241.91	84	N/A	N/A	N/A	9.3090	N/A	286.35
40	9.0848	0.31	114.59	9.0693	0.33	244.94	86	N/A	N/A	N/A	N/A	N/A	N/A
42	9.0728	0.32	111.76	9.0501	0.32	247.75	88	N/A	N/A	N/A	N/A	N/A	N/A
44	9.0770	0.31	109.22	9.0686	0.32	250.35	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.63
Type-A Interpolating Function, u(int) (%)	±0.19
Combined Standard Uncertainty, u(c) (%)	±0.65
Effective degrees of freedom, DF(c)	173358
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
9.0791	0.087000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.73
Offset Uncertainty, U(off) (%)	+0.21 / -0.32
Expanded Uncertainty, U (%)	+0.94 / -1.1
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyrheliometer	Manufacturer:	Kipp & Zonen
Model:	CHP1	Serial Number:	140108
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 140108 Kipp & Zonen CHP1

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Figure 2. Responsivity vs Local Standard Time

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2	Instrument Respons	ivity (R) and	Calibration Type-F	8 Standard Uncertainty u(B)
	moti uniciti recopono	ivity (it) and	a oundration rype-	

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.0730	0.29	106.76	8.0794	0.29	252.81
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.0692	0.30	104.54	8.0767	0.29	255.07
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.0745	0.30	102.41	8.0758	0.29	257.23
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.0753	0.31	100.37	8.0800	0.29	259.29
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.0783	0.32	98.50	8.0791	0.30	261.27
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.0857	0.30	96.58	8.0743	0.29	263.10
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.0833	0.30	94.79	8.0764	0.29	264.91
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.0863	0.30	93.05	8.0775	0.30	266.71
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.0855	0.31	91.35	8.0797	0.30	268.39
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.0812	0.30	89.68	8.0765	0.30	270.07
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.0854	0.32	88.03	8.0777	0.30	271.72
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.0923	0.31	86.42	8.0779	0.30	273.36
24	8.0778	0.30	167.15	8.0749	0.30	192.94	70	8.0950	0.30	84.82	8.0765	0.30	274.98
26	8.0841	0.31	151.04	8.0752	0.29	209.08	72	8.0916	0.30	83.18	8.0776	0.31	276.59
28	8.0690	0.31	140.90	8.0759	0.31	218.19	74	8.0956	0.33	81.60	8.0805	0.31	278.20
30	8.0746	0.30	134.49	8.0756	0.32	224.72	76	8.0944	0.31	79.99	8.0790	0.31	279.83
32	8.0730	0.29	129.20	8.0775	0.29	230.05	78	8.0915	0.32	78.38	8.0809	N/A	281.44
34	8.0697	0.30	124.82	8.0783	0.30	234.61	80	8.0786	N/A	76.74	8.0794	N/A	283.09
36	8.0724	0.30	121.00	8.0763	0.31	238.40	82	8.0753	N/A	75.09	8.0795	N/A	284.73
38	8.0755	0.31	117.64	8.0773	0.31	241.90	84	8.0898	N/A	73.42	8.0767	N/A	286.38
40	8.0738	0.31	114.45	8.0772	0.30	244.99	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.0743	0.29	111.81	8.0743	0.30	247.80	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.0718	0.30	109.15	8.0768	0.29	250.44	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.33
Type-A Interpolating Function, u(int) (%)	±0.11
Combined Standard Uncertainty, u(c) (%)	±0.35
Effective degrees of freedom, DF(c)	123510
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.68
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.0747	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.63
Offset Uncertainty, U(off) (%)	+0.14 / -0.068
Expanded Uncertainty, U (%)	+0.78 / -0.70
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology., 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	Kipp & Zonen
Model:	CMP11	Serial Number:	140712
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Infrared Irradiance ‡	Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	04/16/2018	04/16/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 140712 Kipp & Zonen CMP11

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	9.1384	0.31	106.83	9.1979	0.31	252.82
2	N/A	N/A	N/A	N/A	N/A	N/A	48	9.1213	0.33	104.55	9.1992	0.32	255.14
4	N/A	N/A	N/A	N/A	N/A	N/A	50	9.0540	0.34	102.41	9.1931	0.32	257.24
6	N/A	N/A	N/A	N/A	N/A	N/A	52	9.0400	0.35	100.32	9.1971	0.34	259.30
8	N/A	N/A	N/A	N/A	N/A	N/A	54	9.0360	0.36	98.46	9.1925	0.33	261.23
10	N/A	N/A	N/A	N/A	N/A	N/A	56	9.0533	0.38	96.58	9.2006	0.34	263.10
12	N/A	N/A	N/A	N/A	N/A	N/A	58	9.0541	0.34	94.77	9.1806	0.34	264.92
14	N/A	N/A	N/A	N/A	N/A	N/A	60	9.0598	0.35	93.05	9.1818	0.37	266.67
16	N/A	N/A	N/A	N/A	N/A	N/A	62	9.0754	0.38	91.35	9.1689	0.36	268.40
18	N/A	N/A	N/A	N/A	N/A	N/A	64	9.0217	0.40	89.68	9.1851	0.38	270.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.9577	0.42	88.04	9.1796	0.39	271.68
22	N/A	N/A	N/A	N/A	N/A	N/A	68	9.0351	0.44	86.42	9.1804	0.41	273.36
24	9.2007	0.31	167.06	9.2020	0.32	193.07	70	9.0754	0.44	84.78	9.1864	0.44	274.99
26	9.2133	0.31	150.99	9.1996	0.30	209.07	72	9.0733	0.47	83.19	9.2009	0.47	276.60
28	9.1429	0.32	140.64	9.2077	0.32	218.08	74	9.0542	0.51	81.61	9.1880	0.52	278.20
30	9.1552	0.32	134.50	9.2082	0.33	224.62	76	9.0436	0.61	79.99	9.1954	0.58	279.79
32	9.1621	0.32	129.23	9.2075	0.32	230.07	78	8.9718	0.65	78.39	9.1850	N/A	281.40
34	9.1648	0.30	124.84	9.2104	0.31	234.50	80	9.0835	N/A	76.79	9.1749	N/A	283.05
36	9.1643	0.30	121.03	9.2117	0.30	238.41	82	N/A	N/A	N/A	9.2728	N/A	284.69
38	9.1619	0.31	117.58	9.2151	0.32	241.95	84	N/A	N/A	N/A	9.3253	N/A	286.39
40	9.1658	0.33	114.58	9.2095	0.31	244.93	86	N/A	N/A	N/A	N/A	N/A	N/A
42	9.1439	0.35	111.75	9.1938	0.32	247.74	88	N/A	N/A	N/A	N/A	N/A	N/A
44	9.1441	0.31	109.22	9.2085	0.34	250.39	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.65
Type-A Interpolating Function, u(int) (%)	±0.20
Combined Standard Uncertainty, u(c) (%)	±0.68
Effective degrees of freedom, DF(c)	139338
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
9,1796	0.20500

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.74
Offset Uncertainty, U(off) (%)	+0.39 / -1.6
Expanded Uncertainty, U (%)	+1.1 / -2.3
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology., 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	Kipp & Zonen
Model:	CMP11	Serial Number:	140713
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Infrared Irradiance ‡	Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	04/16/2018	04/16/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 140713 Kipp & Zonen CMP11

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- v = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4,

- Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

[1]

Tc = case temperature of pyrgeometer (K).

Figure 2. Responsivity vs Local Standard Time

Table 2	Instrument Responsivity	(\mathbf{R}) and	Calibration	Type-B Stand	ard Uncertainty u(B)
	moti uniciti recoponorvity	(1) (1)		Type-D olunia	and oncontainty, alb

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	$(\mu V/W/m^2)$	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.6605	0.31	106.83	8.6746	0.31	252.82
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.6506	0.33	104.55	8.6788	0.32	255.14
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.6162	0.34	102.41	8.6662	0.32	257.24
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.5967	0.35	100.32	8.6741	0.34	259.30
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.5894	0.36	98.46	8.6679	0.33	261.23
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.5992	0.38	96.58	8.6818	0.34	263.10
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.5975	0.34	94.77	8.6486	0.34	264.92
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.5876	0.35	93.05	8.6410	0.37	266.67
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.5953	0.39	91.35	8.6085	0.36	268.40
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.5497	0.40	89.68	8.6316	0.38	270.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.4740	0.42	88.04	8.6106	0.39	271.68
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.5656	0.44	86.42	8.5950	0.42	273.36
24	8.6975	0.31	167.06	8.6983	0.32	193.07	70	8.6010	0.44	84.78	8.5919	0.44	274.99
26	8.6974	0.31	150.99	8.6897	0.30	209.07	72	8.5907	0.47	83.19	8.6028	0.48	276.60
28	8.6680	0.32	140.64	8.6989	0.32	218.08	74	8.5471	0.51	81.61	8.5572	0.52	278.20
30	8.6683	0.32	134.50	8.7032	0.33	224.62	76	8.5275	0.62	79.99	8.5337	0.59	279.79
32	8.6713	0.32	129.23	8.7001	0.32	230.07	78	8.4601	0.65	78.39	8.4843	N/A	281.40
34	8.6835	0.30	124.84	8.6970	0.31	234.50	80	8.6290	N/A	76.79	8.4167	N/A	283.05
36	8.6849	0.30	121.03	8.6971	0.30	238.41	82	N/A	N/A	N/A	8.4416	N/A	284.69
38	8.6779	0.32	117.58	8.7026	0.32	241.95	84	N/A	N/A	N/A	8.3989	N/A	286.39
40	8.6823	0.33	114.58	8.6932	0.31	244.93	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.6575	0.35	111.75	8.6543	0.32	247.74	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.6727	0.31	109.22	8.6864	0.34	250.39	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.65
Type-A Interpolating Function, u(int) (%)	±0.26
Combined Standard Uncertainty, u(c) (%)	±0.70
Effective degrees of freedom, DF(c)	60569
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.4
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.6806	0.20500

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.74
Offset Uncertainty, U(off) (%)	+0.26 / -1.1
Expanded Uncertainty, U (%)	+1.0 / -1.8
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Toet Instrumont	Silicon Dyranometer	Manufacturor	Kinn & Zonen
rest instrument.	Shicon Fyranometer	Manufacturer.	Ripp & Zonen
Model:	SP-LITE2	Serial Number:	151027
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 151027 Kipp & Zonen SP-LITE2

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$

I = reference irradiance (W/m²), beam (B) or global (G) where, G = B * COS(Z) + D,

- Z =zenith angle (degrees),
- D = reference diffuse irradiance (W/m²).

[1]

where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	68.489	0.31	106.77	69.468	0.32	252.82
2	N/A	N/A	N/A	N/A	N/A	N/A	48	68.673	0.31	104.55	69.632	0.32	255.08
4	N/A	N/A	N/A	N/A	N/A	N/A	50	68.911	0.33	102.41	69.711	0.33	257.23
6	N/A	N/A	N/A	N/A	N/A	N/A	52	68.917	0.35	100.38	69.911	0.32	259.29
8	N/A	N/A	N/A	N/A	N/A	N/A	54	68.967	0.32	98.40	69.970	0.32	261.22
10	N/A	N/A	N/A	N/A	N/A	N/A	56	69.158	0.36	96.58	70.254	0.33	263.10
12	N/A	N/A	N/A	N/A	N/A	N/A	58	69.159	0.38	94.75	70.143	0.33	264.91
14	N/A	N/A	N/A	N/A	N/A	N/A	60	69.064	0.34	93.05	70.272	0.34	266.67
16	N/A	N/A	N/A	N/A	N/A	N/A	62	69.040	0.35	91.35	70.182	0.35	268.39
18	N/A	N/A	N/A	N/A	N/A	N/A	64	68.799	0.36	89.68	70.423	0.36	270.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	68.519	0.40	88.03	70.429	0.38	271.72
22	N/A	N/A	N/A	N/A	N/A	N/A	68	68.899	0.39	86.42	70.381	0.40	273.36
24	68.261	0.31	167.32	68.399	0.31	193.01	70	68.809	0.42	84.82	70.398	0.42	274.99
26	68.421	0.32	151.05	68.378	0.31	209.06	72	68.551	0.45	83.18	70.735	0.45	276.60
28	68.082	0.33	140.91	68.458	0.31	218.07	74	68.520	0.49	81.61	70.834	0.49	278.20
30	68.150	0.31	134.42	68.628	0.29	224.61	76	68.588	0.54	79.99	71.226	0.55	279.83
32	68.103	0.30	129.21	68.773	0.32	230.02	78	68.965	0.61	78.39	72.009	N/A	281.44
34	68.293	0.31	124.83	68.853	0.32	234.61	80	71.249	N/A	76.74	73.377	N/A	283.09
36	68.311	0.31	121.06	68.887	0.31	238.40	82	N/A	N/A	N/A	76.425	N/A	284.73
38	68.209	0.31	117.65	69.082	0.31	241.82	84	N/A	N/A	N/A	81.323	N/A	286.39
40	68.292	0.32	114.46	69.207	0.33	244.99	86	N/A	N/A	N/A	N/A	N/A	N/A
42	68.341	0.31	111.82	69.110	0.33	247.81	88	N/A	N/A	N/A	N/A	N/A	N/A
44	68.421	0.30	109.15	69.384	0.36	250.45	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.61
Type-A Interpolating Function, u(int) (%)	±0.26
Combined Standard Uncertainty, u(c) (%)	±0.66
Effective degrees of freedom, DF(c)	45325
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

	Table 4.	Calibration	Label	Values
--	----------	-------------	-------	--------

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
69.009	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.74
Offset Uncertainty, U(off) (%)	+1.8 / -1.3
Expanded Uncertainty, U (%)	+2.6 / -2.1
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	Kipp & Zonen
Model:	CMP22	Serial Number:	160430
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Instrument	Calibration Date	Calibration Due Date
Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	04/16/2018	04/16/2022
	Instrument Eppley Absolute Cavity Radiometer Model HF, S/N 29219 Hukseflux Pyranometer Model SR25, S/N 2541 Hukseflux Pyranometer Model SR25, S/N 2542 NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998 NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999 Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	InstrumentCalibration DateEppley Absolute Cavity Radiometer Model HF, S/N 2921909/27/2019Hukseflux Pyranometer Model SR25, S/N 254104/17/2020Hukseflux Pyranometer Model SR25, S/N 254204/17/2020NREL Data Acquisition System Model RAP-DAQ, S/N 2005-99802/14/2019NREL Data Acquisition System Model RAP-DAQ, S/N 2005-99902/14/2019Kipp & Zonen Pyrgeometer Model CG4, S/N FT00204/16/2018

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 160430 Kipp & Zonen CMP22

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),

 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2.	Instrument Res	nonsivity (R	and Calibration	Type-B Standard	Uncertainty, u(B)

Zenith		AM			ΡM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	9.7905	0.32	106.77	9.7931	0.31	252.83
2	N/A	N/A	N/A	N/A	N/A	N/A	48	9.7900	0.33	104.56	9.7994	0.31	255.08
4	N/A	N/A	N/A	N/A	N/A	N/A	50	9.7841	0.36	102.42	9.7911	0.32	257.24
6	N/A	N/A	N/A	N/A	N/A	N/A	52	9.7707	0.34	100.41	9.7924	0.32	259.30
8	N/A	N/A	N/A	N/A	N/A	N/A	54	9.7560	0.36	98.46	9.7874	0.36	261.23
10	N/A	N/A	N/A	N/A	N/A	N/A	56	9.7555	0.37	96.59	9.7957	0.35	263.11
12	N/A	N/A	N/A	N/A	N/A	N/A	58	9.7369	0.34	94.85	9.7691	0.34	264.92
14	N/A	N/A	N/A	N/A	N/A	N/A	60	9.7280	0.34	93.06	9.7625	0.35	266.68
16	N/A	N/A	N/A	N/A	N/A	N/A	62	9.7327	0.35	91.36	9.7328	0.36	268.40
18	N/A	N/A	N/A	N/A	N/A	N/A	64	9.7041	0.39	89.68	9.7493	0.37	270.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	9.6396	0.41	88.04	9.7283	0.38	271.68
22	N/A	N/A	N/A	N/A	N/A	N/A	68	9.6849	0.40	86.43	9.7132	0.40	273.37
24	9.8191	0.30	166.91	9.8157	0.32	193.10	70	9.6984	0.42	84.78	9.7061	0.43	274.99
26	9.8282	0.30	150.93	9.8076	0.32	209.14	72	9.6895	0.45	83.19	9.7109	0.46	276.60
28	9.8013	0.35	140.83	9.8149	0.32	218.09	74	9.6449	0.54	81.61	9.6811	0.50	278.21
30	9.8085	0.32	134.32	9.8174	0.31	224.63	76	9.6268	0.55	80.00	9.6805	0.56	279.80
32	9.8037	0.31	129.23	9.8158	0.33	230.08	78	9.5790	0.63	78.39	9.6657	N/A	281.41
34	9.8103	0.30	124.85	9.8131	0.32	234.51	80	9.7189	N/A	76.79	9.6272	N/A	283.05
36	9.8183	0.31	121.02	9.8120	0.33	238.42	82	N/A	N/A	N/A	9.6336	N/A	284.70
38	9.8056	0.32	117.58	9.8174	0.34	241.91	84	N/A	N/A	N/A	9.6153	N/A	286.35
40	9.8083	0.31	114.59	9.8063	0.33	244.94	86	N/A	N/A	N/A	N/A	N/A	N/A
42	9.7903	0.32	111.76	9.7860	0.32	247.75	88	N/A	N/A	N/A	N/A	N/A	N/A
44	9.7947	0.31	109.22	9.8061	0.32	250.35	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.63
Type-A Interpolating Function, u(int) (%)	±0.18
Combined Standard Uncertainty, u(c) (%)	±0.65
Effective degrees of freedom, DF(c)	183648
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
9.8050	0.087000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.73
Offset Uncertainty, U(off) (%)	+0.14 / -0.79
Expanded Uncertainty, U (%)	+0.87 / -1.5
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Silicon Pyranometer	Manufacturer:	Kipp & Zonen
Model:	SP-LITE2	Serial Number:	194362
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 194362 Kipp & Zonen SP-LITE2

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	72.165	0.31	106.77	73.182	0.32	252.82
2	N/A	N/A	N/A	N/A	N/A	N/A	48	72.364	0.31	104.55	73.400	0.32	255.08
4	N/A	N/A	N/A	N/A	N/A	N/A	50	72.678	0.33	102.41	73.455	0.33	257.23
6	N/A	N/A	N/A	N/A	N/A	N/A	52	72.745	0.35	100.38	73.628	0.32	259.29
8	N/A	N/A	N/A	N/A	N/A	N/A	54	72.849	0.34	98.45	73.733	0.32	261.22
10	N/A	N/A	N/A	N/A	N/A	N/A	56	72.969	0.36	96.58	73.973	0.33	263.10
12	N/A	N/A	N/A	N/A	N/A	N/A	58	72.902	0.38	94.75	73.852	0.33	264.91
14	N/A	N/A	N/A	N/A	N/A	N/A	60	72.820	0.34	93.05	73.995	0.34	266.67
16	N/A	N/A	N/A	N/A	N/A	N/A	62	72.792	0.35	91.35	73.859	0.35	268.39
18	N/A	N/A	N/A	N/A	N/A	N/A	64	72.595	0.36	89.68	74.067	0.36	270.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	72.118	0.40	88.03	74.047	0.38	271.72
22	N/A	N/A	N/A	N/A	N/A	N/A	68	72.653	0.39	86.42	73.904	0.40	273.36
24	71.872	0.31	167.32	72.025	0.31	193.01	70	72.441	0.42	84.82	73.887	0.42	274.99
26	72.022	0.32	151.05	72.006	0.31	209.06	72	72.114	0.45	83.18	74.091	0.45	276.60
28	71.674	0.33	140.91	72.142	0.31	218.07	74	71.968	0.49	81.61	74.062	0.49	278.20
30	71.720	0.31	134.42	72.274	0.29	224.61	76	71.868	0.54	79.99	74.245	0.55	279.83
32	71.723	0.30	129.21	72.477	0.32	230.02	78	72.156	0.61	78.39	74.804	N/A	281.44
34	71.895	0.31	124.83	72.540	0.32	234.61	80	74.459	N/A	76.74	75.930	N/A	283.09
36	71.908	0.31	121.06	72.588	0.31	238.40	82	N/A	N/A	N/A	78.677	N/A	284.73
38	71.844	0.31	117.65	72.793	0.31	241.82	84	N/A	N/A	N/A	83.342	N/A	286.39
40	71.987	0.31	114.46	72.884	0.33	244.99	86	N/A	N/A	N/A	N/A	N/A	N/A
42	72.013	0.31	111.82	72.820	0.33	247.81	88	N/A	N/A	N/A	N/A	N/A	N/A
44	72.095	0.30	109.15	73.113	0.36	250.45	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

- I = reference irradiance (W/m²), beam (B) or global (G) where, G = B * COS(Z) + D,
 - Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.61
Type-A Interpolating Function, u(int) (%)	±0.26
Combined Standard Uncertainty, u(c) (%)	±0.66
Effective degrees of freedom, DF(c)	47457
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
72.703	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.74
Offset Uncertainty, U(off) (%)	+1.8 / -1.4
Expanded Uncertainty, U (%)	+2.5 / -2.1
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Black and White Pyranometer	Manufacturer:	Eppley
Model:	8-48	Serial Number:	21096
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°

2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 21096 Eppley 8-48

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

where, G = B * COS(Z) + D,

Z = zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

[1]

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	11.663	0.31	106.75	11.623	0.31	252.80
2	N/A	N/A	N/A	N/A	N/A	N/A	48	11.705	0.33	104.53	11.649	0.33	255.06
4	N/A	N/A	N/A	N/A	N/A	N/A	50	11.776	0.33	102.45	11.656	0.33	257.21
6	N/A	N/A	N/A	N/A	N/A	N/A	52	11.819	0.36	100.42	11.678	0.35	259.28
8	N/A	N/A	N/A	N/A	N/A	N/A	54	11.898	0.32	98.48	11.692	0.32	261.26
10	N/A	N/A	N/A	N/A	N/A	N/A	56	11.948	0.35	96.62	11.738	0.35	263.14
12	N/A	N/A	N/A	N/A	N/A	N/A	58	11.980	0.34	94.78	11.712	0.34	264.90
14	N/A	N/A	N/A	N/A	N/A	N/A	60	11.990	0.36	93.04	11.735	0.36	266.71
16	N/A	N/A	N/A	N/A	N/A	N/A	62	12.034	0.35	91.34	11.725	0.35	268.38
18	N/A	N/A	N/A	N/A	N/A	N/A	64	12.042	0.36	89.67	11.767	0.37	270.08
20	N/A	N/A	N/A	N/A	N/A	N/A	66	11.974	0.40	88.02	11.767	0.38	271.71
22	N/A	N/A	N/A	N/A	N/A	N/A	68	12.134	0.40	86.41	11.772	0.40	273.39
24	11.506	0.30	167.09	11.531	0.31	192.86	70	12.147	0.42	84.81	11.781	0.42	274.97
26	11.517	0.30	151.01	11.528	0.32	209.19	72	12.140	0.45	83.22	11.812	0.46	276.59
28	11.528	0.30	140.77	11.529	0.30	218.16	74	12.123	0.53	81.60	11.800	0.50	278.19
30	11.544	0.32	134.47	11.554	0.31	224.70	76	12.112	0.55	80.02	11.762	0.56	279.82
32	11.556	0.33	129.19	11.584	0.32	230.03	78	12.071	0.76	78.38	11.744	N/A	281.43
34	11.568	0.33	124.80	11.581	0.32	234.59	80	12.218	N/A	76.73	11.687	N/A	283.08
36	11.574	0.32	120.95	11.587	0.31	238.50	82	N/A	N/A	N/A	11.698	N/A	284.72
38	11.565	0.32	117.63	11.602	0.31	241.88	84	N/A	N/A	N/A	11.721	N/A	286.38
40	11.594	0.31	114.48	11.626	0.32	244.93	86	N/A	N/A	N/A	N/A	N/A	N/A
42	11.603	0.32	111.80	11.581	0.30	247.79	88	N/A	N/A	N/A	N/A	N/A	N/A
44	11.631	0.30	109.14	11.623	0.31	250.43	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.76
Type-A Interpolating Function, u(int) (%)	±0.27
Combined Standard Uncertainty, $u(c)$ (%)	±0.81
Effective degrees of freedom, DF(c)	89560
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.6
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4.	Calibration	Label	Values
1 4010 4.	ounoration	Luber	*uiuc3

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
11.649	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.71
Offset Uncertainty, U(off) (%)	+2.9 / -0.90
Expanded Uncertainty, U (%)	+3.6 / -1.6
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	Hukseflux
Model:	SR25	Serial Number:	2530
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Instrument	Calibration Date	Calibration Due Date
Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	04/16/2018	04/16/2022
	Instrument Eppley Absolute Cavity Radiometer Model HF, S/N 29219 Hukseflux Pyranometer Model SR25, S/N 2541 Hukseflux Pyranometer Model SR25, S/N 2542 NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998 NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999 Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	InstrumentCalibration DateEppley Absolute Cavity Radiometer Model HF, S/N 2921909/27/2019Hukseflux Pyranometer Model SR25, S/N 254104/17/2020Hukseflux Pyranometer Model SR25, S/N 254204/17/2020NREL Data Acquisition System Model RAP-DAQ, S/N 2005-99802/14/2019NREL Data Acquisition System Model RAP-DAQ, S/N 2005-99902/14/2019Kipp & Zonen Pyrgeometer Model CG4, S/N FT00204/16/2018

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 2530 Hukseflux SR25

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),

= Win - Wout = Win - $\sigma * Tc^4$

where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	11.103	0.31	106.83	11.173	0.31	252.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	11.113	0.34	104.55	11.192	0.31	255.13
4	N/A	N/A	N/A	N/A	N/A	N/A	50	11.135	0.38	102.41	11.209	0.31	257.29
6	N/A	N/A	N/A	N/A	N/A	N/A	52	11.147	0.37	100.32	11.218	0.34	259.29
8	N/A	N/A	N/A	N/A	N/A	N/A	54	11.160	0.34	98.45	11.226	0.32	261.22
10	N/A	N/A	N/A	N/A	N/A	N/A	56	11.174	0.36	96.63	11.237	0.33	263.10
12	N/A	N/A	N/A	N/A	N/A	N/A	58	11.172	0.40	94.79	11.248	0.34	264.91
14	N/A	N/A	N/A	N/A	N/A	N/A	60	11.167	0.34	93.05	11.270	0.34	266.67
16	N/A	N/A	N/A	N/A	N/A	N/A	62	11.201	0.35	91.35	11.289	0.35	268.39
18	N/A	N/A	N/A	N/A	N/A	N/A	64	11.223	0.39	89.68	11.290	0.37	270.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	11.216	0.38	88.03	11.313	0.38	271.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	11.224	0.40	86.42	11.329	0.40	273.36
24	11.055	0.31	167.01	11.052	0.30	193.28	70	11.262	0.42	84.78	11.345	0.42	274.99
26	11.092	0.32	151.16	11.066	0.31	208.97	72	11.311	0.45	83.18	11.373	0.46	276.60
28	11.029	0.33	140.65	11.098	0.32	218.07	74	11.318	0.49	81.61	11.401	0.54	278.20
30	11.049	0.32	134.38	11.099	0.32	224.61	76	11.365	0.55	79.99	11.466	0.56	279.79
32	11.052	0.31	129.22	11.089	0.32	230.06	78	11.338	0.62	78.39	11.524	N/A	281.40
34	11.050	0.32	124.83	11.113	0.30	234.52	80	11.450	N/A	76.79	11.591	N/A	283.05
36	11.066	0.32	121.00	11.117	0.31	238.40	82	N/A	N/A	N/A	11.707	N/A	284.69
38	11.069	0.30	117.57	11.124	0.31	241.90	84	N/A	N/A	N/A	11.868	N/A	286.38
40	11.090	0.33	114.58	11.141	0.33	244.93	86	N/A	N/A	N/A	N/A	N/A	N/A
42	11.092	0.32	111.74	11.156	0.30	247.81	88	N/A	N/A	N/A	N/A	N/A	N/A
44	11.085	0.30	109.21	11.164	0.32	250.38	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

- I = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,
 - Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

0.62-0.60-0.55-^ک 0.50 (%) @0.45 0.40-0.35-0.29-5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) u(B) Max = 0.62 DF Max = +Inf • AM × PM

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.62
Type-A Interpolating Function, u(int) (%)	±0.17
Combined Standard Uncertainty, u(c) (%)	±0.64
Effective degrees of freedom, DF(c)	211310
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

	Table 4.	Calibration	Label	Values
--	----------	-------------	-------	--------

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
11.142	0.043000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.79
Offset Uncertainty, U(off) (%)	+1.1 / -0.84
Expanded Uncertainty, U (%)	+1.9 / -1.6
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	Hukseflux
Model:	SR25	Serial Number:	2543
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Instrument	Calibration Date	Calibration Due Date
Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	04/16/2018	04/16/2022
	Instrument Eppley Absolute Cavity Radiometer Model HF, S/N 29219 Hukseflux Pyranometer Model SR25, S/N 2541 Hukseflux Pyranometer Model SR25, S/N 2542 NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998 NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999 Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	InstrumentCalibration DateEppley Absolute Cavity Radiometer Model HF, S/N 2921909/27/2019Hukseflux Pyranometer Model SR25, S/N 254104/17/2020Hukseflux Pyranometer Model SR25, S/N 254204/17/2020NREL Data Acquisition System Model RAP-DAQ, S/N 2005-99802/14/2019NREL Data Acquisition System Model RAP-DAQ, S/N 2005-99902/14/2019Kipp & Zonen Pyrgeometer Model CG4, S/N FT00204/16/2018

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 2543 Hukseflux SR25

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- *Wnet* = effective net infrared measured by pyrgeometer (W/m^2),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	9.5200	0.31	106.83	9.5474	0.31	252.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	9.5336	0.34	104.55	9.5509	0.31	255.13
4	N/A	N/A	N/A	N/A	N/A	N/A	50	9.5355	0.38	102.41	9.5566	0.32	257.29
6	N/A	N/A	N/A	N/A	N/A	N/A	52	9.5458	0.37	100.32	9.5558	0.34	259.29
8	N/A	N/A	N/A	N/A	N/A	N/A	54	9.5216	0.34	98.45	9.5643	0.32	261.22
10	N/A	N/A	N/A	N/A	N/A	N/A	56	9.5123	0.35	96.68	9.5723	0.33	263.10
12	N/A	N/A	N/A	N/A	N/A	N/A	58	9.5232	0.40	94.79	9.5600	0.34	264.91
14	N/A	N/A	N/A	N/A	N/A	N/A	60	9.5075	0.34	93.05	9.5589	0.34	266.67
16	N/A	N/A	N/A	N/A	N/A	N/A	62	9.5129	0.35	91.35	9.5542	0.35	268.39
18	N/A	N/A	N/A	N/A	N/A	N/A	64	9.5066	0.39	89.68	9.5605	0.37	270.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	9.5075	0.38	88.03	9.5547	0.38	271.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	9.4863	0.40	86.42	9.5505	0.40	273.36
24	9.5021	0.31	167.01	9.5050	0.30	193.28	70	9.4755	0.42	84.78	9.5515	0.43	274.99
26	9.5268	0.32	151.16	9.5171	0.31	208.97	72	9.4864	0.45	83.18	9.5513	0.46	276.60
28	9.4986	0.33	140.65	9.5244	0.32	218.07	74	9.4759	0.49	81.61	9.5560	0.54	278.20
30	9.5032	0.32	134.38	9.5193	0.32	224.61	76	9.4715	0.55	79.99	9.5638	0.56	279.79
32	9.5002	0.31	129.22	9.5169	0.32	230.06	78	9.4220	0.62	78.39	9.5782	N/A	281.40
34	9.5119	0.32	124.83	9.5273	0.30	234.52	80	9.5222	N/A	76.79	9.5910	N/A	283.05
36	9.5143	0.32	121.00	9.5239	0.31	238.40	82	N/A	N/A	N/A	9.6425	N/A	284.69
38	9.5119	0.30	117.57	9.5265	0.31	241.90	84	N/A	N/A	N/A	9.6916	N/A	286.38
40	9.5165	0.33	114.58	9.5317	0.33	244.93	86	N/A	N/A	N/A	N/A	N/A	N/A
42	9.5223	0.32	111.74	9.5438	0.30	247.81	88	N/A	N/A	N/A	N/A	N/A	N/A
44	9.5159	0.30	109.21	9.5510	0.32	250.38	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.62
Type-A Interpolating Function, u(int) (%)	±0.16
Combined Standard Uncertainty, u(c) (%)	±0.64
Effective degrees of freedom, DF(c)	308525
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4.	Calibration	Label	Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
9 5397	0.043000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.79
Offset Uncertainty, U(off) (%)	+0.34 / -0.41
Expanded Uncertainty, U (%)	+1.1 / -1.2
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory **Solar Radiation Research Laboratory**

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	28402F3
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 31203F3	04/02/2019	04/02/2023

+ Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 28402F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2. Ins	strument Resp	onsivity (R) aı	nd Calibration Type	pe-B Standard Ur	certainty, u(B)

Zenith		AM			РM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	6.9340	0.33	106.79	6.9316	0.34	252.84
2	N/A	N/A	N/A	N/A	N/A	N/A	48	6.9377	0.34	104.51	6.9297	0.33	255.10
4	N/A	N/A	N/A	N/A	N/A	N/A	50	6.9302	0.37	102.43	6.9093	0.34	257.25
6	N/A	N/A	N/A	N/A	N/A	N/A	52	6.9146	0.36	100.40	6.8967	0.36	259.31
8	N/A	N/A	N/A	N/A	N/A	N/A	54	6.9013	0.35	98.42	6.8780	0.35	261.24
10	N/A	N/A	N/A	N/A	N/A	N/A	56	6.8924	0.36	96.60	6.8905	0.36	263.12
12	N/A	N/A	N/A	N/A	N/A	N/A	58	6.8880	0.38	94.82	6.8624	0.37	264.93
14	N/A	N/A	N/A	N/A	N/A	N/A	60	6.8945	0.38	93.07	6.8635	0.40	266.69
16	N/A	N/A	N/A	N/A	N/A	N/A	62	6.9077	0.42	91.37	6.8526	0.41	268.41
18	N/A	N/A	N/A	N/A	N/A	N/A	64	6.8794	0.42	89.69	6.8932	0.41	270.07
20	N/A	N/A	N/A	N/A	N/A	N/A	66	6.8390	0.42	88.05	6.8948	0.44	271.74
22	N/A	N/A	N/A	N/A	N/A	N/A	68	6.9280	0.45	86.39	6.8331	0.46	273.38
24	7.0529	0.31	166.91	7.0609	0.32	193.13	70	6.8169	0.48	84.79	6.7351	0.50	275.00
26	7.0111	0.33	150.96	7.0407	0.34	209.09	72	6.7523	0.52	83.20	6.7529	0.54	276.57
28	7.0345	0.35	140.78	7.0122	0.31	217.99	74	6.7162	0.57	81.62	6.7415	0.60	278.21
30	7.0246	0.34	134.32	7.0235	0.33	224.77	76	6.6771	0.69	80.01	6.7344	0.68	279.81
32	7.0212	0.32	129.15	7.0312	0.34	230.00	78	6.6966	0.73	78.40	6.7731	N/A	281.42
34	7.0152	0.32	124.77	7.0092	0.32	234.38	80	6.8767	N/A	76.76	6.7611	N/A	283.06
36	6.9947	0.33	121.04	6.9981	0.31	238.43	82	N/A	N/A	N/A	6.7788	N/A	284.71
38	6.9745	0.32	117.60	7.0014	0.31	241.85	84	N/A	N/A	N/A	6.9887	N/A	286.40
40	6.9634	0.33	114.53	6.9814	0.33	245.10	86	N/A	N/A	N/A	N/A	N/A	N/A
42	6.9526	0.35	111.70	6.9552	0.35	247.83	88	N/A	N/A	N/A	N/A	N/A	N/A
44	6.9454	0.35	109.18	6.9600	0.32	250.41	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.73
Type-A Interpolating Function, u(int) (%)	±0.30
Combined Standard Uncertainty, u(c) (%)	±0.79
Effective degrees of freedom, DF(c)	56097
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.6
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
6.9486	0.64000

† Rnet determination date: 02/28/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.79
Offset Uncertainty, U(off) (%)	+1.2 / -1.2
Expanded Uncertainty, U (%)	+2.0 / -2.0
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

References:

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

aboratory 2

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	NIP	Serial Number:	31137E6
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°

2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 31137E6 Eppley NIP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Figure 2. Responsivity vs Local Standard Time

where, G = B * COS(Z) + D,

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u((B)
--	-----

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.4418	0.30	106.75	8.4209	0.29	252.81
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.4430	0.30	104.54	8.4341	0.29	255.06
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.4473	0.33	102.42	8.4342	0.31	257.22
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.4799	0.32	100.42	8.4294	0.30	259.28
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.4594	0.30	98.49	8.4320	0.29	261.26
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.4924	0.29	96.62	8.4434	0.30	263.14
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.5182	0.33	94.78	8.4228	0.29	264.90
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.5227	0.30	93.04	8.4290	0.31	266.71
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.4947	0.30	91.34	8.4269	0.30	268.38
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.4850	0.31	89.67	8.4338	0.30	270.08
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.5214	0.31	88.03	8.4350	0.30	271.71
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.5484	0.30	86.42	8.4260	0.30	273.39
24	8.4469	0.30	166.99	8.4383	0.30	193.03	70	8.5152	0.30	84.81	8.4199	0.30	274.98
26	8.4330	0.31	151.02	8.4265	0.31	209.20	72	8.5035	0.30	83.22	8.4317	0.31	276.59
28	8.4571	0.30	140.63	8.4142	0.31	218.17	74	8.4969	0.32	81.60	8.4305	0.31	278.19
30	8.4635	0.29	134.43	8.4289	0.30	224.70	76	8.4818	0.33	79.98	8.4226	0.31	279.82
32	8.4470	0.30	129.23	8.4368	0.30	230.04	78	8.4964	0.32	78.38	8.4285	N/A	281.43
34	8.4532	0.30	124.79	8.4259	0.30	234.54	80	8.5041	N/A	76.74	8.4216	N/A	283.08
36	8.4518	0.31	120.85	8.4258	0.31	238.50	82	8.4983	N/A	75.12	8.4053	N/A	284.72
38	8.4482	0.31	117.64	8.4308	0.29	241.89	84	8.4672	N/A	73.41	8.4202	N/A	286.38
40	8.4373	0.30	114.49	8.4384	0.31	244.98	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.4605	0.29	111.80	8.4239	0.29	247.79	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.4498	0.30	109.14	8.4315	0.31	250.43	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available
Figure 3. Type-B Standard Uncertainty vs Zenith Angle

0.330-0.325-0.320-0 315-0.310-% iduals 0.305 (B) 0.300-0.295 0.290-0.285-0.280-5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) u(B) Max = 0.33 DF Max = +Inf • AM × PM

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.33
Type-A Interpolating Function, u(int) (%)	±0.15
Combined Standard Uncertainty, u(c) (%)	±0.36
Effective degrees of freedom, DF(c)	35774
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.71
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

± An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4.	Calibration	Label	Values
----------	-------------	-------	--------

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.4394	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.64
Offset Uncertainty, U(off) (%)	+0.99 / -0.22
Expanded Uncertainty, U (%)	+1.6 / -0.86
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Black and White Pyranometer	Manufacturer:	Eppley
Model:	8-48	Serial Number:	34722
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°

2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

Calibration Results 34722 Eppley 8-48

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	9.7898	0.31	106.75	9.7166	0.31	252.80
2	N/A	N/A	N/A	N/A	N/A	N/A	48	9.8199	0.33	104.53	9.7300	0.33	255.06
4	N/A	N/A	N/A	N/A	N/A	N/A	50	9.8682	0.33	102.45	9.7301	0.33	257.21
6	N/A	N/A	N/A	N/A	N/A	N/A	52	9.8922	0.36	100.42	9.7336	0.35	259.28
8	N/A	N/A	N/A	N/A	N/A	N/A	54	9.9369	0.32	98.48	9.7318	0.32	261.26
10	N/A	N/A	N/A	N/A	N/A	N/A	56	9.9696	0.35	96.62	9.7536	0.35	263.14
12	N/A	N/A	N/A	N/A	N/A	N/A	58	9.9789	0.34	94.78	9.7160	0.34	264.90
14	N/A	N/A	N/A	N/A	N/A	N/A	60	9.9625	0.36	93.04	9.7160	0.36	266.71
16	N/A	N/A	N/A	N/A	N/A	N/A	62	9.9879	0.35	91.34	9.7011	0.35	268.38
18	N/A	N/A	N/A	N/A	N/A	N/A	64	9.9896	0.37	89.67	9.7232	0.37	270.08
20	N/A	N/A	N/A	N/A	N/A	N/A	66	9.9386	0.40	88.02	9.7175	0.38	271.71
22	N/A	N/A	N/A	N/A	N/A	N/A	68	10.036	0.40	86.41	9.7060	0.40	273.39
24	9.6687	0.30	167.09	9.6878	0.31	192.86	70	10.023	0.42	84.81	9.6945	0.42	274.97
26	9.6909	0.30	151.01	9.6907	0.32	209.19	72	9.9998	0.45	83.22	9.6913	0.46	276.59
28	9.6909	0.30	140.77	9.6708	0.30	218.16	74	9.9689	0.53	81.60	9.6706	0.50	278.19
30	9.7005	0.32	134.47	9.6861	0.31	224.70	76	9.9358	0.55	80.02	9.6307	0.56	279.82
32	9.7047	0.33	129.19	9.7097	0.32	230.03	78	9.8793	0.77	78.38	9.6041	N/A	281.43
34	9.7114	0.33	124.80	9.7037	0.32	234.59	80	9.9480	N/A	76.73	9.5516	N/A	283.08
36	9.7183	0.32	120.95	9.7060	0.31	238.50	82	N/A	N/A	N/A	9.5188	N/A	284.72
38	9.7234	0.32	117.63	9.7139	0.31	241.88	84	N/A	N/A	N/A	9.5176	N/A	286.38
40	9.7441	0.31	114.48	9.7387	0.32	244.93	86	N/A	N/A	N/A	N/A	N/A	N/A
42	9.7592	0.32	111.80	9.7021	0.30	247.79	88	N/A	N/A	N/A	N/A	N/A	N/A
44	9.7701	0.30	109.14	9.7214	0.31	250.43	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

I = reference irradiance (W/m²), beam (B) or global (G)

- where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.77
Type-A Interpolating Function, u(int) (%)	±0.24
Combined Standard Uncertainty, $u(c)$ (%)	±0.80
Effective degrees of freedom, DF(c)	155388
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.6
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
9.7590	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.71
Offset Uncertainty, U(off) (%)	+2.3 / -0.75
Expanded Uncertainty, U (%)	+3.0 / -1.5
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	GPP Pyranometer	Manufacturer:	Eppley
Model:	GPP	Serial Number:	37831F3
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Infrared Irradiance ‡	Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	04/16/2018	04/16/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 37831F3 Eppley GPP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4,

Table 2.	Instrument Responsivity	(R) and Calibration	Type-B Standard	Uncertainty, u(B)
		(, ,,

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.5089	0.32	106.82	8.5162	0.31	252.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.5066	0.33	104.54	8.5079	0.31	255.13
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.4564	0.35	102.40	8.4888	0.33	257.28
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.4449	0.32	100.42	8.4687	0.32	259.29
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.4009	0.36	98.45	8.4508	0.34	261.22
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.3974	0.33	96.63	8.4403	0.33	263.10
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.3648	0.34	94.79	8.4052	0.34	264.91
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.3462	0.35	93.05	8.3855	0.37	266.67
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.3469	0.38	91.34	8.3356	0.36	268.39
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.2989	0.40	89.67	8.3221	0.37	270.08
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.2386	0.39	88.03	8.2788	0.39	271.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.2384	0.41	86.42	8.2368	0.41	273.35
24	8.6167	0.32	166.95	8.6114	0.32	193.02	70	8.2313	0.47	84.82	8.2079	0.44	274.98
26	8.6237	0.32	151.04	8.6051	0.34	209.01	72	8.2057	0.46	83.18	8.1691	0.47	276.59
28	8.5654	0.32	140.77	8.6175	0.34	218.06	74	8.1589	0.51	81.60	8.1059	0.56	278.19
30	8.5694	0.31	134.49	8.6164	0.33	224.61	76	8.1238	0.61	79.98	8.0589	0.62	279.79
32	8.5650	0.32	129.30	8.6008	0.30	230.05	78	8.0178	0.64	78.38	7.9797	N/A	281.40
34	8.5750	0.33	124.82	8.5958	0.30	234.42	80	8.0807	N/A	76.78	7.8784	N/A	283.04
36	8.5653	0.32	121.00	8.5820	0.34	238.40	82	N/A	N/A	N/A	7.8525	N/A	284.69
38	8.5476	0.30	117.58	8.5732	0.30	241.89	84	N/A	N/A	N/A	7.7369	N/A	286.43
40	8.5397	0.33	114.57	8.5549	0.33	244.99	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.5234	0.32	111.74	8.5325	0.31	247.80	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.5197	0.31	109.21	8.5385	0.31	250.38	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

I = reference irradiance (W/m²), beam (B) or global (G)

[1]

20:00

- where, G = B * COS(Z) + D,
 - Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Tc = case temperature of pyrgeometer (K).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.64
Type-A Interpolating Function, u(int) (%)	±0.20
Combined Standard Uncertainty, $u(c)$ (%)	±0.67
Effective degrees of freedom, DF(c)	142055
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4.	Calibration	Label	Values
----------	-------------	-------	--------

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.5290	0.15000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.72
Offset Uncertainty, U(off) (%)	+1.0 / -2.1
Expanded Uncertainty, U (%)	+1.7 / -2.9
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology., 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Standard Precision Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	SPP	Serial Number:	37839F3
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 31203F3	04/02/2019	04/02/2023

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 37839F3 Eppley SPP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),

= $Win - Wout = Win - \sigma * Tc^4$

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.5968	0.32	106.79	8.6418	0.33	252.84
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.5988	0.34	104.51	8.6443	0.32	255.10
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.5986	0.36	102.43	8.6313	0.33	257.25
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.5857	0.35	100.40	8.6245	0.35	259.31
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.5774	0.34	98.42	8.6085	0.34	261.24
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.5729	0.34	96.60	8.6203	0.35	263.12
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.5656	0.37	94.82	8.5794	0.35	264.93
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.5531	0.36	93.07	8.5706	0.39	266.69
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.5509	0.41	91.37	8.5362	0.40	268.41
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.4972	0.41	89.69	8.5513	0.39	270.07
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.4213	0.40	88.05	8.5186	0.41	271.74
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.4993	0.43	86.39	8.4682	0.44	273.38
24	8.6917	0.31	166.91	8.7083	0.32	193.13	70	8.4644	0.45	84.79	8.4282	0.47	275.00
26	8.6613	0.33	150.96	8.6902	0.33	209.09	72	8.3831	0.49	83.20	8.4287	0.50	276.57
28	8.6790	0.34	140.78	8.6706	0.31	217.99	74	8.3239	0.54	81.62	8.3748	0.56	278.21
30	8.6770	0.34	134.32	8.6911	0.33	224.77	76	8.2549	0.65	80.01	8.3226	0.63	279.81
32	8.6758	0.31	129.15	8.6982	0.33	230.00	78	8.2100	0.68	78.40	8.2882	N/A	281.42
34	8.6748	0.31	124.77	8.6818	0.32	234.38	80	8.3188	N/A	76.76	8.1808	N/A	283.06
36	8.6611	0.32	121.04	8.6763	0.31	238.43	82	N/A	N/A	N/A	8.0937	N/A	284.71
38	8.6412	0.32	117.60	8.6880	0.31	241.85	84	N/A	N/A	N/A	8.0410	N/A	286.40
40	8.6316	0.32	114.53	8.6767	0.33	245.10	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.6180	0.34	111.70	8.6480	0.34	247.83	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.6102	0.34	109.18	8.6618	0.32	250.41	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

18:00

20:00

- I = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.68
Type-A Interpolating Function, u(int) (%)	±0.25
Combined Standard Uncertainty, u(c) (%)	±0.73
Effective degrees of freedom, DF(c)	79169
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.4
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.6353	0.30000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.76
Offset Uncertainty, U(off) (%)	+0.73 / -0.95
Expanded Uncertainty, U (%)	+1.5 / -1.7
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

References:

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology., 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5

[6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Short Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	sNIP	Serial Number:	37882E6
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°

2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

Calibration Results 37882E6 Eppley sNIP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.3643	0.30	106.75	8.3521	0.29	252.81
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.3584	0.30	104.54	8.3577	0.29	255.06
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.3690	0.33	102.42	8.3530	0.31	257.22
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.3852	0.32	100.42	8.3571	0.30	259.28
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.3758	0.30	98.49	8.3553	0.29	261.26
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.3815	0.29	96.62	8.3611	0.29	263.17
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.3923	0.33	94.78	8.3506	0.29	264.90
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.3932	0.30	93.04	8.3507	0.31	266.71
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.3837	0.30	91.34	8.3501	0.30	268.38
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.3796	0.31	89.67	8.3537	0.30	270.08
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.3838	0.31	88.03	8.3493	0.30	271.71
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.4031	0.30	86.42	8.3493	0.30	273.39
24	8.3700	0.30	166.85	8.3671	0.30	193.03	70	8.3853	0.30	84.81	8.3451	0.30	274.98
26	8.3670	0.31	151.02	8.3592	0.31	209.20	72	8.3854	0.30	83.22	8.3467	0.31	276.59
28	8.3672	0.30	140.63	8.3543	0.31	218.17	74	8.3869	0.32	81.60	8.3455	0.31	278.19
30	8.3755	0.29	134.43	8.3636	0.30	224.70	76	8.3741	0.33	79.98	8.3410	0.31	279.82
32	8.3701	0.30	129.23	8.3633	0.30	230.04	78	8.3796	0.32	78.38	8.3461	N/A	281.43
34	8.3672	0.30	124.79	8.3564	0.30	234.54	80	8.3686	N/A	76.74	8.3399	N/A	283.08
36	8.3657	0.31	120.85	8.3574	0.31	238.50	82	8.3650	N/A	75.12	8.3278	N/A	284.72
38	8.3669	0.31	117.64	8.3600	0.29	241.89	84	8.3558	N/A	73.41	8.3313	N/A	286.38
40	8.3638	0.30	114.49	8.3642	0.31	244.98	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.3748	0.29	111.80	8.3535	0.29	247.79	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.3680	0.30	109.14	8.3579	0.31	250.43	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 3. Type-B Standard Uncertainty vs Zenith Angle

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.33
Type-A Interpolating Function, u(int) (%)	±0.12
Combined Standard Uncertainty, u(c) (%)	±0.35
Effective degrees of freedom, DF(c)	71018
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.69
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.3611	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.64
Offset Uncertainty, U(off) (%)	+0.38 / -0.12
Expanded Uncertainty, U (%)	+1.0 / -0.77
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Standard Precision Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	SPP	Serial Number:	38924F3
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 31203F3	04/02/2019	04/02/2023

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

Calibration Results 38924F3 Eppley SPP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win σ * Tc^4
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

4,

D = reference diffuse irradiance (W/m²).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

where, G = B * COS(Z) + D,

[1]

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.8527	0.31	106.79	7.9286	0.33	252.84
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.8478	0.33	104.51	7.9229	0.32	255.10
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.8524	0.36	102.43	7.9089	0.32	257.25
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.8373	0.34	100.40	7.8957	0.34	259.31
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.8205	0.33	98.42	7.8770	0.33	261.24
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.8095	0.34	96.60	7.8858	0.34	263.12
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.7973	0.36	94.82	7.8451	0.35	264.93
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.7788	0.36	93.07	7.8338	0.38	266.69
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.7728	0.40	91.37	7.7988	0.39	268.41
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.7252	0.40	89.69	7.8026	0.38	270.07
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.6525	0.40	88.05	7.7661	0.40	271.74
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.6978	0.42	86.39	7.7086	0.42	273.38
24	7.9893	0.31	166.91	8.0009	0.32	193.13	70	7.6506	0.45	84.79	7.6541	0.45	275.00
26	7.9656	0.32	150.96	7.9887	0.33	209.09	72	7.5936	0.48	83.20	7.6415	0.49	276.57
28	7.9627	0.34	140.78	7.9718	0.31	217.99	74	7.5274	0.52	81.62	7.5824	0.54	278.21
30	7.9560	0.33	134.32	7.9836	0.33	224.77	76	7.4500	0.64	80.01	7.5287	0.61	279.81
32	7.9437	0.31	129.15	7.9876	0.33	230.00	78	7.3862	0.67	78.40	7.4813	N/A	281.42
34	7.9320	0.31	124.77	7.9747	0.31	234.38	80	7.4544	N/A	76.76	7.3730	N/A	283.06
36	7.9175	0.32	121.04	7.9718	0.30	238.43	82	N/A	N/A	N/A	7.2652	N/A	284.71
38	7.8974	0.32	117.60	7.9765	0.31	241.85	84	N/A	N/A	N/A	7.1576	N/A	286.40
40	7.8898	0.32	114.53	7.9691	0.32	245.10	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.8745	0.34	111.70	7.9384	0.34	247.83	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.8660	0.34	109.18	7.9501	0.31	250.41	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.67
Type-A Interpolating Function, u(int) (%)	±0.24
Combined Standard Uncertainty, u(c) (%)	±0.71
Effective degrees of freedom, DF(c)	82232
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.4
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7,9068	0.22000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

±0.75
+1.0 / -1.6
+1.8 / -2.4
+Inf
1.96
30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Si pyranometer	Manufacturer:	Apogee
Model:	SP-110	Serial Number:	40337
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

Calibration Results 40337 Apogee SP-110

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4,

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	179.86	0.31	106.80	183.17	0.31	252.79
2	N/A	N/A	N/A	N/A	N/A	N/A	48	180.47	0.31	104.58	183.21	0.35	255.10
4	N/A	N/A	N/A	N/A	N/A	N/A	50	181.08	0.34	102.44	183.24	0.31	257.26
6	N/A	N/A	N/A	N/A	N/A	N/A	52	181.14	0.32	100.40	183.35	0.32	259.26
8	N/A	N/A	N/A	N/A	N/A	N/A	54	181.35	0.37	98.48	183.24	0.34	261.25
10	N/A	N/A	N/A	N/A	N/A	N/A	56	181.39	0.37	96.61	183.54	0.35	263.12
12	N/A	N/A	N/A	N/A	N/A	N/A	58	181.53	0.35	94.82	183.08	0.33	264.94
14	N/A	N/A	N/A	N/A	N/A	N/A	60	181.38	0.34	93.07	183.14	0.34	266.69
16	N/A	N/A	N/A	N/A	N/A	N/A	62	181.36	0.35	91.32	182.82	0.35	268.42
18	N/A	N/A	N/A	N/A	N/A	N/A	64	181.33	0.36	89.70	183.40	0.36	270.07
20	N/A	N/A	N/A	N/A	N/A	N/A	66	180.59	0.38	88.01	183.20	0.38	271.70
22	N/A	N/A	N/A	N/A	N/A	N/A	68	182.41	0.39	86.40	183.20	0.40	273.38
24	183.78	0.32	167.05	184.30	0.31	192.79	70	182.42	0.45	84.80	183.28	0.42	274.97
26	183.66	0.30	150.98	184.20	0.30	209.16	72	182.75	0.45	83.21	184.30	0.45	276.62
28	182.13	0.31	140.72	184.03	0.31	218.13	74	183.52	0.49	81.58	184.81	0.49	278.18
30	181.89	0.33	134.44	184.26	0.32	224.67	76	184.55	0.54	80.01	186.23	0.55	279.81
32	181.30	0.29	129.20	184.16	0.30	230.00	78	187.18	0.61	78.37	188.94	N/A	281.42
34	181.51	0.30	124.88	184.02	0.30	234.57	80	194.57	N/A	76.77	192.95	N/A	283.07
36	180.99	0.31	120.96	183.78	0.31	238.47	82	N/A	N/A	N/A	201.10	N/A	284.71
38	180.38	0.33	117.63	183.84	0.30	241.86	84	N/A	N/A	N/A	215.09	N/A	286.37
40	180.38	0.31	114.61	183.80	0.30	244.96	86	N/A	N/A	N/A	N/A	N/A	N/A
42	180.27	0.30	111.78	183.24	0.32	247.77	88	N/A	N/A	N/A	N/A	N/A	N/A
44	180.15	0.32	109.18	183.48	0.30	250.42	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- I = reference irradiance (W/m²), beam (B) or global (G) where, G = B * COS(Z) + D,
 - - Z =zenith angle (degrees), D = reference diffuse irradiance (W/m²).
- Tc = case temperature of pyrgeometer (K).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.61
Type-A Interpolating Function, u(int) (%)	±0.26
Combined Standard Uncertainty, u(c) (%)	±0.66
Effective degrees of freedom, DF(c)	48351
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
181.86	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.73
Offset Uncertainty, U(off) (%)	+1.3 / -1.1
Expanded Uncertainty, U (%)	+2.0 / -1.8
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyrheliometer	Manufacturer:	Hukseflux
Model:	DR02	Serial Number:	9206
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

Calibration Results 9206 Hukseflux DR02

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- *Wnet* = effective net infrared measured by pyrgeometer (W/m^2),
 - = Win Wout = Win σ * Tc^4
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Figure 1. Responsivity vs Zenith Angle

Figure 2. Responsivity vs Local Standard Time

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

[1]

Table 2.	Instrument Res	ponsivity (R)	and Calibration	Type-B Stand	lard Uncertainty, u(B	3)
						-,

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	11.018	0.29	106.76	11.034	0.29	252.81
2	N/A	N/A	N/A	N/A	N/A	N/A	48	11.009	0.29	104.54	11.026	0.29	255.07
4	N/A	N/A	N/A	N/A	N/A	N/A	50	11.019	0.33	102.40	11.034	0.30	257.22
6	N/A	N/A	N/A	N/A	N/A	N/A	52	11.014	0.30	100.37	11.038	0.29	259.28
8	N/A	N/A	N/A	N/A	N/A	N/A	54	11.020	0.31	98.49	11.038	0.29	261.27
10	N/A	N/A	N/A	N/A	N/A	N/A	56	11.028	0.30	96.57	11.027	0.29	263.14
12	N/A	N/A	N/A	N/A	N/A	N/A	58	11.022	0.30	94.78	11.032	0.29	264.91
14	N/A	N/A	N/A	N/A	N/A	N/A	60	11.013	0.29	93.05	11.034	0.29	266.71
16	N/A	N/A	N/A	N/A	N/A	N/A	62	11.006	0.30	91.34	11.038	0.30	268.39
18	N/A	N/A	N/A	N/A	N/A	N/A	64	11.016	0.30	89.67	11.031	0.30	270.08
20	N/A	N/A	N/A	N/A	N/A	N/A	66	11.037	0.31	88.03	11.035	0.30	271.71
22	N/A	N/A	N/A	N/A	N/A	N/A	68	11.018	0.30	86.42	11.039	0.30	273.35
24	11.018	0.29	166.98	11.020	0.30	192.98	70	11.019	0.31	84.81	11.039	0.30	274.98
26	11.037	0.31	151.03	11.021	0.30	209.21	72	11.009	0.30	83.22	11.039	0.30	276.59
28	11.015	0.29	140.80	11.029	0.30	218.18	74	11.027	0.31	81.63	11.041	0.31	278.19
30	11.017	0.31	134.48	11.022	0.31	224.76	76	11.031	0.31	79.99	11.047	0.31	279.83
32	11.017	0.29	129.23	11.024	0.29	230.12	78	11.030	0.31	78.38	11.051	N/A	281.44
34	11.018	0.31	124.81	11.026	0.30	234.54	80	11.015	N/A	76.74	11.059	N/A	283.08
36	11.018	0.30	120.99	11.028	0.29	238.48	82	11.019	N/A	75.12	11.061	N/A	284.73
38	11.023	0.30	117.64	11.028	0.31	241.91	84	11.057	N/A	73.41	11.076	N/A	286.38
40	11.017	0.29	114.49	11.028	0.30	244.98	86	N/A	N/A	N/A	N/A	N/A	N/A
42	11.020	0.30	111.81	11.033	0.29	247.80	88	N/A	N/A	N/A	N/A	N/A	N/A
44	11.019	0.29	109.14	11.027	0.31	250.44	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.33
Type-A Interpolating Function, u(int) (%)	±0.13
Combined Standard Uncertainty, $u(c)$ (%)	±0.35
Effective degrees of freedom, DF(c)	61098
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.69
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4.	Calibration	Label	Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
11.020	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.64
Offset Uncertainty, U(off) (%)	+0.16 / -0.10
Expanded Uncertainty, U (%)	+0.80 / -0.74
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

References:

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5

[6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Toot Instrument	Silioon Dyronomotor	Manufacturary	Kinn & Zonen	
rest instrument.	Shicon Pyranometer	Manufacturer:	Kipp & Zonen	
Model:	SP-LITE	Serial Number:	970003	
Calibration Date:	5/5/2020	Due Date:	5/5/2021	
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4	
Test Dates:	5/4-5			

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

Calibration Results 970003 Kipp & Zonen SP-LITE

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	82.978	0.31	106.77	80.032	0.32	252.82
2	N/A	N/A	N/A	N/A	N/A	N/A	48	83.380	0.31	104.55	80.126	0.32	255.08
4	N/A	N/A	N/A	N/A	N/A	N/A	50	83.868	0.33	102.41	80.032	0.33	257.23
6	N/A	N/A	N/A	N/A	N/A	N/A	52	84.141	0.35	100.38	80.006	0.32	259.29
8	N/A	N/A	N/A	N/A	N/A	N/A	54	84.256	0.34	98.45	79.937	0.32	261.22
10	N/A	N/A	N/A	N/A	N/A	N/A	56	84.587	0.36	96.58	79.955	0.33	263.10
12	N/A	N/A	N/A	N/A	N/A	N/A	58	84.751	0.38	94.75	79.519	0.33	264.91
14	N/A	N/A	N/A	N/A	N/A	N/A	60	84.767	0.34	93.05	79.385	0.34	266.67
16	N/A	N/A	N/A	N/A	N/A	N/A	62	84.945	0.35	91.35	78.888	0.35	268.39
18	N/A	N/A	N/A	N/A	N/A	N/A	64	84.929	0.36	89.68	78.754	0.36	270.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	84.763	0.40	88.03	78.297	0.38	271.72
22	N/A	N/A	N/A	N/A	N/A	N/A	68	85.412	0.39	86.42	77.658	0.40	273.36
24	80.920	0.31	167.16	80.628	0.31	193.01	70	85.432	0.42	84.82	77.075	0.42	274.99
26	81.505	0.32	151.05	80.287	0.31	209.06	72	85.317	0.45	83.18	76.700	0.45	276.60
28	81.148	0.33	140.91	80.212	0.31	218.07	74	85.581	0.49	81.61	76.052	0.49	278.20
30	81.399	0.31	134.42	80.230	0.29	224.61	76	85.910	0.54	79.99	75.564	0.55	279.83
32	81.494	0.30	129.21	80.269	0.32	230.02	78	86.697	0.61	78.39	75.533	N/A	281.44
34	81.921	0.31	124.83	80.265	0.32	234.61	80	89.826	N/A	76.74	76.094	N/A	283.09
36	82.035	0.31	121.06	80.125	0.31	238.40	82	N/A	N/A	N/A	78.271	N/A	284.73
38	82.080	0.31	117.65	80.228	0.31	241.82	84	N/A	N/A	N/A	82.386	N/A	286.39
40	82.377	0.31	114.46	80.229	0.33	244.99	86	N/A	N/A	N/A	N/A	N/A	N/A
42	82.567	0.31	111.82	79.993	0.33	247.81	88	N/A	N/A	N/A	N/A	N/A	N/A
44	82.764	0.30	109.15	80.184	0.36	250.45	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

20:00

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.61
Type-A Interpolating Function, u(int) (%)	±0.26
Combined Standard Uncertainty, $u(c)$ (%)	±0.66
Effective degrees of freedom, DF(c)	48120
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

± An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4.	Calibration	Label	Values
1 4010 41	ounsration	Easo.	- anabe

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
81.550	0

+ Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.74
Offset Uncertainty, U(off) (%)	+3.9 / -2.7
Expanded Uncertainty, U (%)	+4.7 / -3.4
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Sunshine Pyranometer - Global Output	Manufacturer:	Delta-T
Model:	SPN1	Serial Number:	A360
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°

2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

Calibration Results A360 Delta-T SPN1

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

- C_{i} , $C_{i} = D_{i}$, $COS(2) + D_{i}$
 - Z =zenith angle (degrees),

Figure 2. Responsivity vs Local Standard Time

D = reference diffuse irradiance (W/m²).

[1]

Tahlo 2	Instrument Res	nonsivity (R)	and Calibration	Type-B Stan	dard Uncertainty	/ 11/R)	
	moti ument reco		una ounoration	Type-D olun	aara oncontanny	, (,)	

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	1054.0	0.32	106.80	982.91	0.31	252.79
2	N/A	N/A	N/A	N/A	N/A	N/A	48	1063.2	0.31	104.58	974.85	0.31	255.11
4	N/A	N/A	N/A	N/A	N/A	N/A	50	1069.4	0.31	102.44	989.52	0.31	257.20
6	N/A	N/A	N/A	N/A	N/A	N/A	52	1079.3	0.32	100.41	988.81	0.32	259.27
8	N/A	N/A	N/A	N/A	N/A	N/A	54	1084.7	0.32	98.48	989.30	0.34	261.25
10	N/A	N/A	N/A	N/A	N/A	N/A	56	1090.0	0.33	96.61	989.21	0.33	263.13
12	N/A	N/A	N/A	N/A	N/A	N/A	58	1099.5	0.33	94.82	989.00	0.33	264.94
14	N/A	N/A	N/A	N/A	N/A	N/A	60	1102.4	0.34	93.03	989.70	0.34	266.70
16	N/A	N/A	N/A	N/A	N/A	N/A	62	1113.9	0.35	91.33	998.18	0.35	268.42
18	N/A	N/A	N/A	N/A	N/A	N/A	64	1121.6	0.36	89.70	1016.2	0.36	270.07
20	N/A	N/A	N/A	N/A	N/A	N/A	66	1135.0	0.40	88.02	1020.6	0.38	271.70
22	N/A	N/A	N/A	N/A	N/A	N/A	68	1144.1	0.39	86.40	1031.7	0.40	273.38
24	1043.4	0.31	167.06	1025.8	0.31	193.05	70	1125.9	0.42	84.80	1036.3	0.42	274.97
26	1046.3	0.30	150.99	1017.9	0.31	209.17	72	1120.7	0.45	83.21	1040.4	0.45	276.62
28	1021.2	0.32	140.86	1013.0	0.32	218.11	74	1121.6	0.49	81.59	1044.9	0.49	278.18
30	1031.7	0.35	134.40	1015.6	0.34	224.68	76	1118.7	0.54	80.01	1051.8	0.55	279.81
32	1033.9	0.34	129.23	1000.7	0.31	229.98	78	1115.8	0.61	78.37	1047.2	N/A	281.47
34	1032.5	0.31	124.79	998.82	0.30	234.57	80	1104.4	N/A	76.79	1039.4	N/A	283.07
36	1032.7	0.33	120.97	994.14	0.30	238.45	82	N/A	N/A	N/A	1021.4	N/A	284.71
38	1036.1	0.32	117.62	988.99	0.31	241.84	84	N/A	N/A	N/A	1018.9	N/A	286.37
40	1039.6	0.30	114.55	983.36	0.33	244.98	86	N/A	N/A	N/A	N/A	N/A	N/A
42	1046.3	0.33	111.79	982.95	0.32	247.78	88	N/A	N/A	N/A	N/A	N/A	N/A
44	1048.5	0.30	109.19	984.16	0.33	250.42	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.61
Type-A Interpolating Function, u(int) (%)	±0.63
Combined Standard Uncertainty, u(c) (%)	±0.88
Effective degrees of freedom, DF(c)	4245
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.7
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
1019.4	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.68
Offset Uncertainty, U(off) (%)	+8.1 / -4.4
Expanded Uncertainty, U (%)	+8.8 / -5.0
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	EKO
Model:	MS-802	Serial Number:	F14077R
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Instrument	Calibration Date	Calibration Due Date
Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	04/16/2018	04/16/2022
	Instrument Eppley Absolute Cavity Radiometer Model HF, S/N 29219 Hukseflux Pyranometer Model SR25, S/N 2541 Hukseflux Pyranometer Model SR25, S/N 2542 NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998 NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999 Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	InstrumentCalibration DateEppley Absolute Cavity Radiometer Model HF, S/N 2921909/27/2019Hukseflux Pyranometer Model SR25, S/N 254104/17/2020Hukseflux Pyranometer Model SR25, S/N 254204/17/2020NREL Data Acquisition System Model RAP-DAQ, S/N 2005-99802/14/2019NREL Data Acquisition System Model RAP-DAQ, S/N 2005-99902/14/2019Kipp & Zonen Pyrgeometer Model CG4, S/N FT00204/16/2018

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results F14077R EKO MS-802

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- *Wnet* = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			РM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.0805	0.31	106.82	7.1145	0.33	252.87
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.0772	0.33	104.54	7.1251	0.32	255.12
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.0638	0.35	102.40	7.1397	0.34	257.27
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.0701	0.37	100.42	7.1174	0.35	259.28
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.0250	0.35	98.44	7.1164	0.35	261.21
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.0351	0.37	96.62	7.1225	0.34	263.09
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.0205	0.37	94.79	7.1123	0.35	264.95
14	N/A	N/A	N/A	N/A	N/A	N/A	60	6.9962	0.36	93.04	7.1064	0.36	266.66
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.0035	0.36	91.34	7.1128	0.37	268.39
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.0483	0.40	89.67	7.1169	0.38	270.08
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.1443	0.39	88.03	7.1148	0.40	271.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.0063	0.42	86.41	7.1298	0.42	273.35
24	7.1247	0.30	166.84	7.1215	0.31	193.06	70	6.9991	0.47	84.81	7.1430	0.45	274.98
26	7.1389	0.33	151.12	7.1392	0.31	209.06	72	7.0207	0.47	83.18	7.1380	0.48	276.59
28	7.0749	0.32	140.63	7.1562	0.32	218.05	74	7.0573	0.52	81.60	7.1538	0.53	278.19
30	7.0746	0.31	134.37	7.1481	0.32	224.60	76	7.0925	0.58	79.98	7.1604	0.59	279.78
32	7.0707	0.32	129.29	7.1284	0.33	230.04	78	7.0972	0.66	78.38	7.1777	N/A	281.39
34	7.1044	0.33	124.82	7.1395	0.31	234.42	80	7.1611	N/A	76.78	7.2112	N/A	283.04
36	7.0929	0.31	120.99	7.1211	0.30	238.39	82	N/A	N/A	N/A	7.2959	N/A	284.68
38	7.0963	0.32	117.56	7.1137	0.32	241.89	84	N/A	N/A	N/A	7.3192	N/A	286.42
40	7.0872	0.31	114.56	7.0927	0.34	244.98	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.1016	0.33	111.74	7.1439	0.31	247.86	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.0698	0.33	109.27	7.1321	0.34	250.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

I = reference irradiance (W/m²), beam (B) or global (G)

- where, G = B * COS(Z) + D,
 - Z =zenith angle (degrees),

Figure 2. Responsivity vs Local Standard Time

D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.66
Type-A Interpolating Function, u(int) (%)	±0.45
Combined Standard Uncertainty, u(c) (%)	±0.80
Effective degrees of freedom, DF(c)	11200
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.6
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.1082	0.18000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.73
Offset Uncertainty, U(off) (%)	+0.56 / -1.6
Expanded Uncertainty, U (%)	+1.3 / -2.3
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

References:

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology., 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5

[6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Revised Silicon Pyranometer	Manufacturer:	Licor
Model:	LI200R	Serial Number:	PY100360
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°

2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

Calibration Results PY100360 Licor LI200R

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),

= Win - Wout = Win - $\sigma * Tc^4$

where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	10.719	0.31	106.77	10.750	0.31	252.82
2	N/A	N/A	N/A	N/A	N/A	N/A	48	10.746	0.33	104.55	10.763	0.33	255.08
4	N/A	N/A	N/A	N/A	N/A	N/A	50	10.774	0.35	102.42	10.764	0.33	257.23
6	N/A	N/A	N/A	N/A	N/A	N/A	52	10.790	0.33	100.38	10.767	0.33	259.30
8	N/A	N/A	N/A	N/A	N/A	N/A	54	10.807	0.34	98.46	10.761	0.34	261.22
10	N/A	N/A	N/A	N/A	N/A	N/A	56	10.799	0.33	96.58	10.786	0.33	263.10
12	N/A	N/A	N/A	N/A	N/A	N/A	58	10.830	0.37	94.80	10.758	0.34	264.92
14	N/A	N/A	N/A	N/A	N/A	N/A	60	10.796	0.34	93.05	10.757	0.34	266.67
16	N/A	N/A	N/A	N/A	N/A	N/A	62	10.789	0.35	91.35	10.730	0.35	268.39
18	N/A	N/A	N/A	N/A	N/A	N/A	64	10.754	0.41	89.68	10.745	0.37	270.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	10.693	0.43	88.03	10.723	0.38	271.72
22	N/A	N/A	N/A	N/A	N/A	N/A	68	10.780	0.40	86.42	10.700	0.40	273.36
24	10.788	0.32	166.97	10.800	0.32	193.02	70	10.765	0.42	84.74	10.680	0.42	274.99
26	10.804	0.33	150.85	10.779	0.31	209.04	72	10.709	0.45	83.19	10.702	0.46	276.60
28	10.767	0.29	141.03	10.768	0.31	218.08	74	10.698	0.49	81.61	10.690	0.50	278.20
30	10.765	0.29	134.16	10.783	0.30	224.62	76	10.696	0.65	79.99	10.702	0.56	279.83
32	10.755	0.32	129.22	10.800	0.32	229.97	78	10.730	0.62	78.39	10.765	N/A	281.45
34	10.770	0.31	124.84	10.790	0.30	234.53	80	11.034	N/A	76.75	10.872	N/A	283.05
36	10.747	0.30	121.07	10.773	0.30	238.41	82	N/A	N/A	N/A	11.199	N/A	284.74
38	10.726	0.31	117.65	10.785	0.31	241.83	84	N/A	N/A	N/A	11.331	N/A	286.39
40	10.734	0.33	114.51	10.787	0.33	245.00	86	N/A	N/A	N/A	N/A	N/A	N/A
42	10.723	0.30	111.82	10.756	0.32	247.81	88	N/A	N/A	N/A	N/A	N/A	N/A
44	10.726	0.34	109.17	10.779	0.35	250.45	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- I = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.65		
Type-A Interpolating Function, u(int) (%)	±0.27		
Combined Standard Uncertainty, u(c) (%)	±0.70		
Effective degrees of freedom, DF(c)	52787		
Coverage factor, k	1.96		
Expanded Uncertainty, U95 (%)	±1.4		
AM Valid zenith angle range	24° to 78°		
PM Valid zenith angle range	24° to 76°		

± An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
10.757	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.73
Offset Uncertainty, U(off) (%)	+0.67 / -0.35
Expanded Uncertainty, U (%)	+1.4 / -1.1
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Revised Silicon Pyranometer	Manufacturer:	Licor
Model:	LI200R	Serial Number:	PY108623
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°

2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

Calibration Results PY108623 Licor LI200R

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	9.8976	0.31	106.77	9.9386	0.31	252.82
2	N/A	N/A	N/A	N/A	N/A	N/A	48	9.9353	0.33	104.55	9.9677	0.33	255.08
4	N/A	N/A	N/A	N/A	N/A	N/A	50	9.9778	0.35	102.42	9.9718	0.33	257.23
6	N/A	N/A	N/A	N/A	N/A	N/A	52	9.9936	0.34	100.38	9.9947	0.34	259.30
8	N/A	N/A	N/A	N/A	N/A	N/A	54	10.014	0.34	98.46	9.9971	0.34	261.22
10	N/A	N/A	N/A	N/A	N/A	N/A	56	10.030	0.33	96.58	10.037	0.33	263.10
12	N/A	N/A	N/A	N/A	N/A	N/A	58	10.038	0.37	94.80	10.015	0.34	264.92
14	N/A	N/A	N/A	N/A	N/A	N/A	60	10.025	0.34	93.05	10.022	0.34	266.67
16	N/A	N/A	N/A	N/A	N/A	N/A	62	10.033	0.35	91.35	10.010	0.35	268.39
18	N/A	N/A	N/A	N/A	N/A	N/A	64	10.031	0.41	89.68	10.035	0.37	270.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	9.9973	0.43	88.03	10.037	0.38	271.72
22	N/A	N/A	N/A	N/A	N/A	N/A	68	10.076	0.40	86.42	10.028	0.40	273.36
24	9.8547	0.32	166.97	9.8632	0.32	193.02	70	10.096	0.42	84.74	10.027	0.42	274.99
26	9.8883	0.33	150.85	9.8567	0.31	209.04	72	10.078	0.45	83.19	10.068	0.46	276.60
28	9.8285	0.29	141.03	9.8567	0.31	218.08	74	10.101	0.49	81.61	10.077	0.50	278.20
30	9.8500	0.29	134.16	9.8878	0.30	224.62	76	10.143	0.65	79.99	10.101	0.56	279.83
32	9.8505	0.32	129.22	9.9061	0.32	229.97	78	10.211	0.62	78.39	10.188	N/A	281.45
34	9.8777	0.31	124.84	9.9114	0.30	234.53	80	10.524	N/A	76.75	10.321	N/A	283.05
36	9.8734	0.30	121.07	9.9100	0.30	238.41	82	N/A	N/A	N/A	10.620	N/A	284.74
38	9.8604	0.31	117.65	9.9228	0.31	241.83	84	N/A	N/A	N/A	10.341	N/A	286.39
40	9.8813	0.33	114.51	9.9388	0.33	245.00	86	N/A	N/A	N/A	N/A	N/A	N/A
42	9.8835	0.30	111.82	9.9167	0.32	247.81	88	N/A	N/A	N/A	N/A	N/A	N/A
44	9.8958	0.34	109.17	9.9536	0.35	250.45	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

18:00

20:00

I = reference irradiance (W/m²), beam (B) or global (G)

where, G = B * COS(Z) + D,

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Type-B Standard Uncertainty, u(B) (%)	±0.65
Type-A Interpolating Function, u(int) (%)	±0.27
Combined Standard Uncertainty, u(c) (%)	±0.71
Effective degrees of freedom, DF(c)	51844
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.4
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4.	Calibration Label	Values
TUDIC T.	ounstation Labor	Vulue3

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
9.9311	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.73
Offset Uncertainty, U(off) (%)	+1.1 / -0.82
Expanded Uncertainty, U (%)	+1.8 / -1.5
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Silicon Pyranometer	Manufacturer:	Licor
Model:	L1200	Serial Number:	PY1750
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results PY1750 Licor LI200

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	13.084	0.31	106.77	13.174	0.31	252.82
2	N/A	N/A	N/A	N/A	N/A	N/A	48	13.138	0.33	104.55	13.190	0.33	255.04
4	N/A	N/A	N/A	N/A	N/A	N/A	50	13.208	0.35	102.42	13.198	0.33	257.23
6	N/A	N/A	N/A	N/A	N/A	N/A	52	13.233	0.33	100.38	13.188	0.33	259.30
8	N/A	N/A	N/A	N/A	N/A	N/A	54	13.237	0.34	98.46	13.175	0.34	261.22
10	N/A	N/A	N/A	N/A	N/A	N/A	56	13.221	0.33	96.58	13.184	0.33	263.10
12	N/A	N/A	N/A	N/A	N/A	N/A	58	13.216	0.37	94.80	13.125	0.34	264.92
14	N/A	N/A	N/A	N/A	N/A	N/A	60	13.181	0.34	93.05	13.109	0.34	266.67
16	N/A	N/A	N/A	N/A	N/A	N/A	62	13.173	0.35	91.35	13.087	0.35	268.39
18	N/A	N/A	N/A	N/A	N/A	N/A	64	13.171	0.41	89.68	13.123	0.36	270.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	13.138	0.43	88.03	13.120	0.38	271.72
22	N/A	N/A	N/A	N/A	N/A	N/A	68	13.264	0.40	86.42	13.115	0.40	273.36
24	13.200	0.32	166.97	13.227	0.32	193.02	70	13.282	0.42	84.74	13.121	0.42	274.99
26	13.214	0.33	150.85	13.203	0.31	209.04	72	13.266	0.45	83.19	13.198	0.45	276.60
28	13.237	0.29	141.03	13.153	0.31	218.08	74	13.339	0.49	81.61	13.247	0.50	278.20
30	13.228	0.29	134.16	13.187	0.29	224.62	76	13.445	0.65	79.99	13.329	0.55	279.83
32	13.197	0.32	129.22	13.230	0.32	229.97	78	13.657	0.61	78.39	13.516	N/A	281.45
34	13.186	0.31	124.82	13.217	0.30	234.53	80	14.235	N/A	76.75	13.792	N/A	283.05
36	13.164	0.30	121.07	13.212	0.30	238.41	82	N/A	N/A	N/A	14.331	N/A	284.74
38	13.123	0.31	117.65	13.230	0.31	241.83	84	N/A	N/A	N/A	13.889	N/A	286.39
40	13.113	0.33	114.51	13.238	0.33	245.00	86	N/A	N/A	N/A	N/A	N/A	N/A
42	13.105	0.30	111.82	13.193	0.32	247.81	88	N/A	N/A	N/A	N/A	N/A	N/A
44	13.100	0.34	109.17	13.206	0.35	250.45	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- I = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Type-B Standard Uncertainty, u(B) (%)	±0.65
Type-A Interpolating Function, u(int) (%)	±0.27
Combined Standard Uncertainty, u(c) (%)	±0.70
Effective degrees of freedom, DF(c)	51099
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.4
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

± An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4.	Calibration	Label	Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
13.157	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

±0.73
+0.62 / -0.55
+1.3 / -1.3
+Inf
1.96
30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Silicon Pyranometer	Manufacturer:	Licor
Model:	LI200	Serial Number:	PY28257
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results PY28257 Licor LI200

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

- $Z = Z = \frac{1}{2} \frac{1}$
 - Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

[1]

Table 2. Instrument Responsivity (R) and Cambration Type-D Standard Oncertainty, u(D)	Table 2.	Instrument Responsivity ((R) and Calibration	Type-B Standard	Uncertainty, u(B)
---	----------	---------------------------	---------------------	-----------------	-------------------

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	13.678	0.31	106.77	13.740	0.31	252.82
2	N/A	N/A	N/A	N/A	N/A	N/A	48	13.695	0.33	104.55	13.728	0.33	255.08
4	N/A	N/A	N/A	N/A	N/A	N/A	50	13.698	0.35	102.42	13.697	0.33	257.23
6	N/A	N/A	N/A	N/A	N/A	N/A	52	13.676	0.33	100.38	13.677	0.33	259.30
8	N/A	N/A	N/A	N/A	N/A	N/A	54	13.671	0.34	98.46	13.642	0.34	261.22
10	N/A	N/A	N/A	N/A	N/A	N/A	56	13.633	0.33	96.58	13.649	0.33	263.10
12	N/A	N/A	N/A	N/A	N/A	N/A	58	13.610	0.37	94.80	13.585	0.34	264.92
14	N/A	N/A	N/A	N/A	N/A	N/A	60	13.532	0.34	93.05	13.570	0.34	266.67
16	N/A	N/A	N/A	N/A	N/A	N/A	62	13.502	0.35	91.35	13.517	0.35	268.39
18	N/A	N/A	N/A	N/A	N/A	N/A	64	13.431	0.41	89.68	13.523	0.36	270.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	13.313	0.42	88.03	13.475	0.38	271.72
22	N/A	N/A	N/A	N/A	N/A	N/A	68	13.375	0.40	86.42	13.429	0.40	273.36
24	13.996	0.32	166.97	14.001	0.31	193.02	70	13.309	0.42	84.74	13.393	0.42	274.99
26	14.008	0.33	150.85	13.963	0.31	209.04	72	13.221	0.45	83.19	13.400	0.45	276.60
28	13.945	0.29	141.03	13.936	0.31	218.08	74	13.176	0.49	81.61	13.378	0.50	278.20
30	13.923	0.29	134.16	13.928	0.29	224.62	76	13.166	0.65	79.99	13.387	0.55	279.83
32	13.892	0.32	129.22	13.926	0.32	229.97	78	13.166	0.61	78.39	13.478	N/A	281.45
34	13.887	0.31	124.84	13.911	0.30	234.53	80	13.543	N/A	76.75	13.654	N/A	283.05
36	13.849	0.30	121.07	13.872	0.30	238.41	82	N/A	N/A	N/A	14.069	N/A	284.74
38	13.793	0.31	117.65	13.861	0.31	241.83	84	N/A	N/A	N/A	13.338	N/A	286.39
40	13.781	0.33	114.51	13.842	0.33	245.00	86	N/A	N/A	N/A	N/A	N/A	N/A
42	13.756	0.30	111.82	13.781	0.32	247.81	88	N/A	N/A	N/A	N/A	N/A	N/A
44	13.724	0.34	109.17	13.786	0.35	250.45	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

±0.65
±0.28
±0.70
48327
1.96
±1.4
24° to 78°
24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
13.751	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.73
Offset Uncertainty, U(off) (%)	+1.3 / -1.6
Expanded Uncertainty, U (%)	+2.0 / -2.3
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Semiconductor Pyrheliometer	Manufacturer:	Licor
		manaraotaron	LIGOT
Model:	LI201SB	Serial Number:	PYHR101
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°

2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results PYHR101 Licor LI201SB

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- *Wnet* = effective net infrared measured by pyrgeometer (W/m^2),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	5.9852	0.29	106.77	6.0261	0.29	252.82
2	N/A	N/A	N/A	N/A	N/A	N/A	48	6.0071	0.29	104.55	6.0459	0.31	255.08
4	N/A	N/A	N/A	N/A	N/A	N/A	50	6.0272	0.33	102.42	6.0605	0.31	257.24
6	N/A	N/A	N/A	N/A	N/A	N/A	52	6.0519	0.31	100.38	6.0779	0.29	259.30
8	N/A	N/A	N/A	N/A	N/A	N/A	54	6.0661	0.31	98.46	6.0994	0.31	261.23
10	N/A	N/A	N/A	N/A	N/A	N/A	56	6.0874	0.31	96.59	6.1171	0.30	263.11
12	N/A	N/A	N/A	N/A	N/A	N/A	58	6.1064	0.32	94.80	6.1316	0.30	264.92
14	N/A	N/A	N/A	N/A	N/A	N/A	60	6.1101	0.31	93.06	6.1502	0.30	266.68
16	N/A	N/A	N/A	N/A	N/A	N/A	62	6.1214	0.30	91.35	6.1773	0.30	268.40
18	N/A	N/A	N/A	N/A	N/A	N/A	64	6.1579	0.32	89.68	6.2000	0.30	270.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	6.1939	0.31	88.04	6.2402	0.30	271.72
22	N/A	N/A	N/A	N/A	N/A	N/A	68	6.2235	0.30	86.42	6.2709	0.30	273.36
24	5.9419	0.31	167.11	5.9538	0.31	192.94	70	6.2605	0.32	84.78	6.3105	0.30	274.99
26	5.9537	0.31	150.89	5.9542	0.30	208.97	72	6.2889	0.31	83.19	6.3581	0.31	276.60
28	5.9260	0.31	140.89	5.9543	0.31	217.98	74	6.3400	0.31	81.61	6.4064	0.32	278.20
30	5.9325	0.29	134.31	5.9650	0.30	224.74	76	6.4027	0.31	80.00	6.4621	0.31	279.80
32	5.9318	0.29	129.22	5.9795	0.31	229.97	78	6.4661	0.32	78.39	6.5337	N/A	281.45
34	5.9433	0.31	124.84	5.9768	0.29	234.53	80	6.5480	N/A	76.75	6.6185	N/A	283.05
36	5.9449	0.31	121.01	5.9826	0.31	238.41	82	6.6247	N/A	75.09	6.7073	N/A	284.74
38	5.9423	0.30	117.66	5.9897	0.30	241.83	84	6.7022	N/A	73.42	6.8091	N/A	286.39
40	5.9522	0.32	114.51	6.0040	0.31	245.01	86	N/A	N/A	N/A	N/A	N/A	N/A
42	5.9661	0.29	111.82	6.0118	0.29	247.82	88	N/A	N/A	N/A	N/A	N/A	N/A
44	5.9753	0.31	109.16	6.0236	0.29	250.46	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- I = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,

Z = zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Type-B Standard Uncertainty, u(B) (%)	±0.33
Type-A Interpolating Function, u(int) (%)	±0.21
Combined Standard Uncertainty, $u(c)$ (%)	±0.39
Effective degrees of freedom, DF(c)	14290
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.76
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
6.0067	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.64
Offset Uncertainty, U(off) (%)	+2.4 / -1.2
Expanded Uncertainty, U (%)	+3.0 / -1.9
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	EKO
Model:	MS-602	Serial Number:	S13071483
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Instrument	Calibration Date	Calibration Due Date
Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	04/16/2018	04/16/2022
	Instrument Eppley Absolute Cavity Radiometer Model HF, S/N 29219 Hukseflux Pyranometer Model SR25, S/N 2541 Hukseflux Pyranometer Model SR25, S/N 2542 NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998 NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999 Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	InstrumentCalibration DateEppley Absolute Cavity Radiometer Model HF, S/N 2921909/27/2019Hukseflux Pyranometer Model SR25, S/N 254104/17/2020Hukseflux Pyranometer Model SR25, S/N 254204/17/2020NREL Data Acquisition System Model RAP-DAQ, S/N 2005-99802/14/2019NREL Data Acquisition System Model RAP-DAQ, S/N 2005-99902/14/2019Kipp & Zonen Pyrgeometer Model CG4, S/N FT00204/16/2018

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results S13071483 EKO MS-602

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

- - Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

[1]

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.0779	0.34	106.81	7.1605	0.32	252.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.0606	0.34	104.56	7.1739	0.35	255.11
4	N/A	N/A	N/A	N/A	N/A	N/A	50	6.9277	0.35	102.39	7.1690	0.36	257.27
6	N/A	N/A	N/A	N/A	N/A	N/A	52	6.8965	0.40	100.41	7.1800	0.34	259.28
8	N/A	N/A	N/A	N/A	N/A	N/A	54	6.8800	0.37	98.47	7.1945	0.34	261.21
10	N/A	N/A	N/A	N/A	N/A	N/A	56	6.8945	0.39	96.61	7.2003	0.37	263.08
12	N/A	N/A	N/A	N/A	N/A	N/A	58	6.8758	0.38	94.83	7.1942	0.36	264.95
14	N/A	N/A	N/A	N/A	N/A	N/A	60	6.9067	0.39	93.03	7.2119	0.37	266.66
16	N/A	N/A	N/A	N/A	N/A	N/A	62	6.9426	0.41	91.33	7.1795	0.38	268.42
18	N/A	N/A	N/A	N/A	N/A	N/A	64	6.8207	0.47	89.66	7.2033	0.40	270.07
20	N/A	N/A	N/A	N/A	N/A	N/A	66	6.6896	0.45	88.02	7.1952	0.42	271.70
22	N/A	N/A	N/A	N/A	N/A	N/A	68	6.8131	0.44	86.41	7.2108	0.44	273.35
24	7.1473	0.32	166.92	7.1368	0.32	193.02	70	6.8847	0.47	84.85	7.2373	0.47	274.97
26	7.1461	0.32	150.78	7.1381	0.31	209.24	72	6.9380	0.54	83.21	7.2564	0.51	276.58
28	7.0977	0.34	140.87	7.1595	0.32	218.03	74	6.9161	0.56	81.59	7.2544	0.57	278.23
30	7.0945	0.34	134.35	7.1538	0.31	224.80	76	6.9021	0.62	79.98	7.2495	0.64	279.82
32	7.1017	0.31	129.35	7.1442	0.33	230.03	78	6.7766	0.71	78.42	7.2351	N/A	281.39
34	7.0960	0.35	124.80	7.1620	0.32	234.50	80	6.9058	N/A	76.77	7.2165	N/A	283.03
36	7.1037	0.33	120.98	7.1609	0.32	238.38	82	N/A	N/A	N/A	7.3377	N/A	284.68
38	7.0907	0.31	117.47	7.1594	0.32	241.88	84	N/A	N/A	N/A	7.3548	N/A	286.42
40	7.0952	0.35	114.55	7.1508	0.32	244.97	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.0795	0.32	111.72	7.1313	0.33	247.85	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.0816	0.32	109.20	7.1630	0.35	250.36	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Type-B Standard Uncertainty, u(B) (%)	±0.71
Type-A Interpolating Function, u(int) (%)	±0.43
Combined Standard Uncertainty, u(c) (%)	±0.83
Effective degrees of freedom, DF(c)	16212
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.6
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.1318	0.30000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.79
Offset Uncertainty, U(off) (%)	+1.1 / -3.6
Expanded Uncertainty, U (%)	+1.9 / -4.4
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology., 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Silicon Pyranometer	Manufacturer:	EKO
Model:	ML-01	Serial Number:	S13135063
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results S13135063 EKO ML-01

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4,

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	40.355	0.32	106.80	40.399	0.31	252.80
2	N/A	N/A	N/A	N/A	N/A	N/A	48	40.462	0.31	104.58	40.412	0.33	255.11
4	N/A	N/A	N/A	N/A	N/A	N/A	50	40.593	0.33	102.44	40.402	0.31	257.21
6	N/A	N/A	N/A	N/A	N/A	N/A	52	40.640	0.34	100.41	40.440	0.32	259.27
8	N/A	N/A	N/A	N/A	N/A	N/A	54	40.717	0.37	98.48	40.410	0.34	261.25
10	N/A	N/A	N/A	N/A	N/A	N/A	56	40.801	0.35	96.61	40.486	0.33	263.13
12	N/A	N/A	N/A	N/A	N/A	N/A	58	40.823	0.36	94.82	40.391	0.33	264.89
14	N/A	N/A	N/A	N/A	N/A	N/A	60	40.851	0.36	93.03	40.372	0.34	266.70
16	N/A	N/A	N/A	N/A	N/A	N/A	62	40.889	0.35	91.33	40.296	0.35	268.42
18	N/A	N/A	N/A	N/A	N/A	N/A	64	40.919	0.38	89.66	40.391	0.36	270.07
20	N/A	N/A	N/A	N/A	N/A	N/A	66	40.738	0.38	88.02	40.338	0.38	271.70
22	N/A	N/A	N/A	N/A	N/A	N/A	68	41.227	0.39	86.40	40.282	0.40	273.39
24	40.866	0.30	167.14	40.887	0.31	193.11	70	41.247	0.50	84.81	40.231	0.42	274.97
26	40.918	0.31	150.99	40.767	0.31	209.17	72	41.337	0.45	83.21	40.350	0.45	276.58
28	40.584	0.30	140.90	40.667	0.33	218.11	74	41.510	0.49	81.59	40.334	0.49	278.18
30	40.559	0.31	134.53	40.695	0.33	224.68	76	41.795	0.54	80.02	40.444	0.55	279.82
32	40.506	0.34	129.24	40.660	0.33	230.02	78	42.305	0.61	78.37	40.862	N/A	281.43
34	40.523	0.31	124.79	40.600	0.32	234.58	80	43.940	N/A	76.77	41.588	N/A	283.07
36	40.436	0.31	121.06	40.542	0.30	238.40	82	N/A	N/A	N/A	43.077	N/A	284.72
38	40.352	0.32	117.62	40.517	0.31	241.87	84	N/A	N/A	N/A	45.617	N/A	286.37
40	40.353	0.30	114.55	40.533	0.35	244.97	86	N/A	N/A	N/A	N/A	N/A	N/A
42	40.360	0.32	111.72	40.379	0.30	247.78	88	N/A	N/A	N/A	N/A	N/A	N/A
44	40.388	0.34	109.19	40.468	0.32	250.42	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

I = reference irradiance (W/m²), beam (B) or global (G) where, G = B * COS(Z) + D,

- Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).
- Tc = case temperature of pyrgeometer (K).

Figure 4. Residuals from Spline Interpolation

Type-B Standard Uncertainty, u(B) (%)	±0.61
Type-A Interpolating Function, u(int) (%)	±0.28
Combined Standard Uncertainty, u(c) (%)	±0.67
Effective degrees of freedom, DF(c)	37749
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
40.432	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.73
Offset Uncertainty, U(off) (%)	+1.0 / -0.20
Expanded Uncertainty, U (%)	+1.8 / -0.93
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

National Renewable Energy Laboratory Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	EKO
Model:	MS-410	Serial Number:	S13144.085R
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Infrared Irradiance ‡	Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	04/16/2018	04/16/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results S13144.085R EKO MS-410

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

- where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

[1]

Table 2.	Instrument Responsivity (R) and	I Calibration Type-B Stand	ard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	9.3273	0.31	106.80	9.3645	0.31	252.85
2	N/A	N/A	N/A	N/A	N/A	N/A	48	9.3392	0.34	104.53	9.3755	0.32	255.11
4	N/A	N/A	N/A	N/A	N/A	N/A	50	9.3062	0.32	102.39	9.3819	0.33	257.26
6	N/A	N/A	N/A	N/A	N/A	N/A	52	9.3241	0.34	100.41	9.3833	0.34	259.27
8	N/A	N/A	N/A	N/A	N/A	N/A	54	9.2952	0.35	98.46	9.3973	0.33	261.20
10	N/A	N/A	N/A	N/A	N/A	N/A	56	9.3238	0.34	96.61	9.4081	0.35	263.08
12	N/A	N/A	N/A	N/A	N/A	N/A	58	9.3299	0.36	94.82	9.3985	0.34	264.94
14	N/A	N/A	N/A	N/A	N/A	N/A	60	9.3256	0.39	93.08	9.4147	0.35	266.70
16	N/A	N/A	N/A	N/A	N/A	N/A	62	9.3418	0.38	91.33	9.4067	0.36	268.42
18	N/A	N/A	N/A	N/A	N/A	N/A	64	9.3273	0.42	89.66	9.4145	0.37	270.07
20	N/A	N/A	N/A	N/A	N/A	N/A	66	9.3219	0.47	88.02	9.4070	0.39	271.70
22	N/A	N/A	N/A	N/A	N/A	N/A	68	9.3274	0.41	86.40	9.4097	0.41	273.34
24	9.3003	0.31	166.89	9.3073	0.31	193.02	70	9.3722	0.43	84.80	9.4160	0.44	274.97
26	9.3260	0.30	150.99	9.3103	0.32	209.18	72	9.3990	0.46	83.21	9.4054	0.47	276.58
28	9.2822	0.32	140.68	9.3257	0.31	218.11	74	9.4060	0.51	81.59	9.3778	0.52	278.22
30	9.2830	0.32	134.45	9.3232	0.32	224.80	76	9.3999	0.57	79.97	9.3565	0.58	279.82
32	9.2818	0.30	129.21	9.3193	0.31	230.02	78	9.3659	0.64	78.41	9.3053	N/A	281.43
34	9.2908	0.31	124.79	9.3365	0.31	234.49	80	9.4339	N/A	76.77	9.2731	N/A	283.03
36	9.2939	0.33	120.99	9.3363	0.34	238.46	82	N/A	N/A	N/A	9.2858	N/A	284.67
38	9.2985	0.30	117.62	9.3380	0.32	241.92	84	N/A	N/A	N/A	9.1719	N/A	286.41
40	9.3070	0.32	114.55	9.3433	0.31	244.97	86	N/A	N/A	N/A	N/A	N/A	N/A
42	9.3050	0.32	111.72	9.3456	0.32	247.85	88	N/A	N/A	N/A	N/A	N/A	N/A
44	9.3161	0.32	109.19	9.3610	0.32	250.36	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

8

00

0

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.64
Type-A Interpolating Function, u(int) (%)	±0.17
Combined Standard Uncertainty, $u(c)$ (%)	±0.66
Effective degrees of freedom, DF(c)	273164
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.3
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

± An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
9.3463	0.20000

+ Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.76
Offset Uncertainty, U(off) (%)	+0.73 / -0.69
Expanded Uncertainty, U (%)	+1.5 / -1.5
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer	Manufacturer:	EKO
Model:	MS-80	Serial Number:	S17096005
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021
Infrared Irradiance ‡	Kipp & Zonen Pyrgeometer Model CG4, S/N FT002	04/16/2018	04/16/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

± Through the World Infrared Standard Group (WISG)

For questions or comments, please contact the technical manager at:

ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results S17096005 EKO MS-80

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

where, G = B * COS(Z) + D,

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

[1]

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	10.574	0.31	106.81	10.635	0.32	252.87
2	N/A	N/A	N/A	N/A	N/A	N/A	48	10.602	0.33	104.57	10.635	0.31	255.12
4	N/A	N/A	N/A	N/A	N/A	N/A	50	10.592	0.33	102.40	10.639	0.31	257.27
6	N/A	N/A	N/A	N/A	N/A	N/A	52	10.594	0.32	100.41	10.648	0.34	259.28
8	N/A	N/A	N/A	N/A	N/A	N/A	54	10.594	0.34	98.44	10.668	0.34	261.21
10	N/A	N/A	N/A	N/A	N/A	N/A	56	10.614	0.36	96.62	10.659	0.33	263.09
12	N/A	N/A	N/A	N/A	N/A	N/A	58	10.633	0.34	94.78	10.670	0.34	264.95
14	N/A	N/A	N/A	N/A	N/A	N/A	60	10.627	0.34	93.04	10.646	0.34	266.66
16	N/A	N/A	N/A	N/A	N/A	N/A	62	10.638	0.35	91.34	10.632	0.35	268.38
18	N/A	N/A	N/A	N/A	N/A	N/A	64	10.614	0.42	89.66	10.686	0.37	270.08
20	N/A	N/A	N/A	N/A	N/A	N/A	66	10.667	0.38	88.02	10.669	0.38	271.70
22	N/A	N/A	N/A	N/A	N/A	N/A	68	10.659	0.40	86.41	10.669	0.40	273.35
24	10.653	0.30	167.05	10.637	0.31	193.13	70	10.722	0.46	84.81	10.709	0.42	274.98
26	10.684	0.30	151.01	10.666	0.31	209.20	72	10.676	0.45	83.22	10.683	0.46	276.59
28	10.622	0.34	140.63	10.666	0.32	218.04	74	10.687	0.49	81.59	10.691	0.50	278.19
30	10.599	0.34	134.24	10.681	0.30	224.70	76	10.744	0.59	79.98	10.733	0.56	279.78
32	10.606	0.32	129.36	10.681	0.32	230.04	78	10.715	0.62	78.42	10.744	N/A	281.39
34	10.634	0.33	124.81	10.675	0.30	234.50	80	11.039	N/A	76.69	10.557	N/A	283.04
36	10.589	0.32	120.99	10.656	0.30	238.41	82	N/A	N/A	N/A	10.684	N/A	284.72
38	10.635	0.32	117.55	10.619	0.34	241.88	84	N/A	N/A	N/A	10.178	N/A	286.64
40	10.621	0.34	114.56	10.653	0.31	244.98	86	N/A	N/A	N/A	N/A	N/A	N/A
42	10.582	0.32	111.73	10.625	0.30	247.86	88	N/A	N/A	N/A	N/A	N/A	N/A
44	10.580	0.30	109.26	10.657	0.31	250.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.62
Type-A Interpolating Function, u(int) (%)	±0.82
Combined Standard Uncertainty, $u(c)$ (%)	±1.0
Effective degrees of freedom, DF(c)	2831
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±2.0
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

± An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
10 633	0.043000

+ Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.71
Offset Uncertainty, U(off) (%)	+0.45 / -0.56
Expanded Uncertainty, U (%)	+1.2 / -1.3
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Solar Radiation Research Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyrheliometer	Manufacturer:	EKO
Model:	MS-57	Serial Number:	S18015.22
Calibration Date:	5/5/2020	Due Date:	5/5/2021
Customer:	NREL-SRRL-BMS	Environmental Conditions:	see page 4
Test Dates:	5/4-5		

This certifies that the above product was calibrated in compliance with ISO/IEC 17025:2017. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29219	09/27/2019	09/27/2020
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2541	04/17/2020	04/17/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25, S/N 2542	04/17/2020	04/17/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-998	02/14/2019	02/14/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2005-999	02/14/2019	02/14/2021

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

Calibration Procedure: BORCAL-P00-Calibration and QA Procedure; available upon request.

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Afshin Andreas, Ibrahim Reda, Peter Gotseff, and RCC

Ibrahim Reda, Technical Manager

Date

For questions or comments, please contact the technical manager at: ibrahim.reda@nrel.gov; 303-384-6385; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results S18015.22 EKO MS-57

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	6.6780	0.29	106.81	6.6780	0.30	252.80
2	N/A	N/A	N/A	N/A	N/A	N/A	48	6.6682	0.29	104.53	6.6753	0.30	255.05
4	N/A	N/A	N/A	N/A	N/A	N/A	50	6.6768	0.30	102.45	6.6773	0.29	257.21
6	N/A	N/A	N/A	N/A	N/A	N/A	52	6.6759	0.31	100.41	6.6763	0.29	259.27
8	N/A	N/A	N/A	N/A	N/A	N/A	54	6.6771	0.30	98.49	6.6688	0.29	261.26
10	N/A	N/A	N/A	N/A	N/A	N/A	56	6.6833	0.29	96.61	6.6695	0.29	263.13
12	N/A	N/A	N/A	N/A	N/A	N/A	58	6.6714	0.32	94.78	6.6728	0.30	264.90
14	N/A	N/A	N/A	N/A	N/A	N/A	60	6.6724	0.32	93.04	6.6687	0.30	266.70
16	N/A	N/A	N/A	N/A	N/A	N/A	62	6.6649	0.31	91.33	6.6720	0.30	268.33
18	N/A	N/A	N/A	N/A	N/A	N/A	64	6.6714	0.31	89.66	6.6720	0.30	270.08
20	N/A	N/A	N/A	N/A	N/A	N/A	66	6.6660	0.32	88.02	6.6685	0.30	271.70
22	N/A	N/A	N/A	N/A	N/A	N/A	68	6.6739	0.30	86.40	6.6732	0.30	273.39
24	6.6766	0.29	166.93	6.6737	0.30	192.72	70	6.6613	0.30	84.81	6.6702	0.30	274.97
26	6.6876	0.30	151.14	6.6756	0.30	209.18	72	6.6659	0.30	83.21	6.6636	0.31	276.58
28	6.6686	0.30	140.90	6.6767	0.30	218.15	74	6.6596	0.31	81.59	6.6634	0.31	278.18
30	6.6678	0.31	134.48	6.6817	0.30	224.69	76	6.6571	0.31	80.02	6.6610	0.31	279.82
32	6.6693	0.31	129.18	6.6779	0.29	230.13	78	6.6726	0.32	78.37	6.6646	N/A	281.43
34	6.6739	0.30	124.80	6.6732	0.29	234.40	80	6.6425	N/A	76.77	6.6616	N/A	283.07
36	6.6726	0.31	120.98	6.6767	0.31	238.46	82	6.6479	N/A	75.12	6.6567	N/A	284.72
38	6.6768	0.31	117.62	6.6743	0.32	241.82	84	6.6391	N/A	73.41	6.6422	N/A	286.37
40	6.6755	0.29	114.48	6.6773	0.29	244.97	86	N/A	N/A	N/A	N/A	N/A	N/A
42	6.6754	0.31	111.80	6.6775	0.29	247.78	88	N/A	N/A	N/A	N/A	N/A	N/A
44	6.6812	0.30	109.13	6.6783	0.29	250.43	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

20:00

- *I* = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 3. Type-B Standard Uncertainty vs Zenith Angle

Figure 4. Residuals from Spline Interpolation 0.330-0.7 0.6-0.325-0.320-0.4-+U(int) 0 315-€ 0.2-0.310-(%) Residuals 0.305 (B) -0.0-0.300--0.2 0.295 U(int) 0.290--04 0.285-0.280--0.6 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) Zenith Angle (degrees) u(B) Max = 0.32 DF Max = +Inf • AM × PM • AM × PM

Type-B Standard Uncertainty, u(B) (%)	±0.32
Type-A Interpolating Function, u(int) (%)	±0.18
Combined Standard Uncertainty, $u(c)$ (%)	±0.37
Effective degrees of freedom, DF(c)	19866
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.72
AM Valid zenith angle range	24° to 78°
PM Valid zenith angle range	24° to 76°

± An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°. Not accredited.

Table 4.	Calibration	Label	Values	

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
6.6728	0

+ Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.62
Offset Uncertainty, U(off) (%)	+0.16 / -0.075
Expanded Uncertainty, U (%)	+0.78 / -0.70
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Environmental and Sky Conditions for BORCAL-SW 2020-02

Calibration Facility: Solar Radiation Research Laboratory

Latitude: 39.742°N Longitude: 105.180°W

Elevation: 1828.8 meters AMSL

Time Zone: -7.0

Figure 11. Effective Net Infrared

Table 6. Meteorological Observations

Observations	Mean	Min	Max
Temperature (°C)	15.40	7.23	18.54
Humidity (%)	21.22	9.24	43.11
Pressure (mBar)	818.7	815.3	822.6
Est. Aerosol Optical Depth (BB)	0.053	0.040	0.168

For other information about the calibration facility visit: <u>http://www.nrel.gov/esif/solar-radiation-research-laboratory.html</u>

Appendix 2 BORCAL Notes

Instrument, Configuration, and Session Notes for the BORCAL

BORCAL Notes

Facility: Solar Radiation Research Laboratory Comments: Avg. Station Pressure & Temperature is for Denver, CO, which is used for the Solar Position Algorithm (SPA).

010284-DW-CM3 Kipp & Zonen CM3 Comments: Retro-fitted from CNR1

Session Config: 1171 Apogee SP-510; Number: 2 Comments: 30K Thermistor measured by spare SP-510 pyrgeometer mounted next to pyranometer.