Broadband Outdoor Radiometer Calibration Shortwave

BORCAL-SW 2021-03

Radiometer Calibration and Characterization

Calibration Facility Southern Great Plains

Latitude: 36.605°N Longitude: 97.488°W Elevation: 317.0 meters AMSL Time Zone: -6.0

Calibration date 08/24/2021 to 08/25/2021

Report Date October 27, 2021

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Broadband Outdoor Radiometer Calibration Report

Table of contents

Introduction	
Control Instrument history plots	4
Results summary	5
Appendix 1 Instrument Details	A1-1
Appendix 2 BORCAL Notes	A2-1
Appendix 3 Session Configuration Audit Report	A3-1
Appendix 4 Operator Logs	A4-1

Introduction

This report compiles the calibration results from a Broadband Outdoor Radiometer Calibration (BORCAL). The work was accomplished at the Radiometer Calibration Facility shown on the front of this report. The calibration results reported here are traceable to the International System (SI) Units of Measurement.

This report includes these sections:

- Control Instruments a group of instruments included in each BORCAL event that provides a measure of process consistency.
- Results Summary a table of all instruments included in this report summarizing their calibration results and uncertainty.
- Instrument Details the calibration certificates for each instrument.
- Environmental and Sky Conditions meteorological conditions and reference irradiance during the calibration event.

BORCAL Notes or Comments

Significant outliers in sNIP control 37945E6 possibly due to bugs. Cal still similar to previous BORCALS so it is left in report for consistancy.

In December 2021, the calibration provider of the BORCAL reference diffuse pyranometers (S/N 2551 and 2552) provided revised responsivities. Using the revised responsivities, BORCAL data was reprocessed, and it was found that it only affected the responsivities (R@45) for pyranometers under test issued in this report by only approximately -0.08%. Since this error is much smaller than the total uncertainty of a pyranometer [typically +/- 2.5%] the SGP technical manager and NREL metrologists decided that this error can be ignored, therefore new reports or calibration stickers will not be issued.

Control Instrument History

Results Summary

Table 1. Results Summary

		R@45 ¹	U ²	Rnet ³	
Instrument	Customer	(µV/W/m²)	(%)	$(\mu V/W/m^2)$	Page
200695	SGP	10.508	+1.2 / -1.4	0.087000	A1-2
200710	SGP	9.8504	+1.3 / -1.5	0.087000	A1-5
200803	SGP	8.4117	+0.80 / -0.68	0	A1-8
27973F3	TWP	8.3597	+1.8 / -2.0	0.60000	A1-11
29554E6	SGP	8.0265	+1.5 / -1.2	0	A1-14
29619F3	SGP	8.4031	+2.8 / -3.7	0.69050	A1-17
29743E6	SGP	8.1510	+1.1 / -1.1	0	A1-20
29856E6	SGP	7.8478	+1.1 / -1.1	0	A1-23
29869E6	TWP	8.4751	+1.3 / -1.0	0	A1-26
29913F3	TWP	7.6097	+2.3 / -2.3	0.53900	A1-29
29915F3	TWP	7.4381	+2.1 / -2.5	0.63274	A1-32
29934E6	TWP	8.3291	+1.6 / -1.2	0	A1-35
29938E6	SGP	8.3191	+1.2 / -1.0	0	A1-38
30617F3	SGP	7.9826	+1.9 / -2.8	0.67027	A1-41
30653F3	SGP	8.1393	+1.9 / -2.6	0.61000	A1-44
30665F3	SGP	7.9960	+2.6 / -3.6	0.68202	A1-47
30673F3	SGP	7.7023	+1.9 / -2.1	0.57412	A1-50
30709F3	SGP	7.8371	+2.2 / -2.9	0.61495	A1-53
30717E6	SGP	8.3620	+1.4 / -1.4	0	A1-56
30718E6	SGP	8.2769	+1.2 / -1.1	0	A1-59
30722E6	SGP	8.5855	+1.2 / -1.2	0	A1-62
30776F3	SGP	8.1196	+1.9 / -3.4	0.64865	A1-65
30820F3	SGP	7.8334	+2.0 / -3.3	0.63499	A1-68
30891F3	SGP	7.3728	+1.8 / -2.4	0.57550	A1-71
30900F3	SGP	8.1037	+2.1 / -2.8	0.63379	A1-74
30951F3	SGP	8.3762	+1.9 / -2.5	0.64270	A1-77
30953F3	SGP	8.2691	+2.7 / -3.7	0.67080	A1-80
31096F3	SGP	8.2257	+2.1 / -2.8	0.71483	A1-83
31099F3	Calibration System	7.3457	+2.0 / -3.1	0.57866	A1-86
31100F3	Calibration System	7.6807	+1.9 / -2.4	0.64729	A1-89
31101F3	Calibration System	7.9922	+2.2 / -3.5	0.64834	A1-92
31120E6	Calibration System	8.4699	+1.2 / -1.0	0	A1-95
31122E6	Calibration System	8.8620	+1.0 / -1.1	0	A1-98
31149F3	Calibration System	7.9499	+1.7 / -2.1	0.54900	A1-101
31150F3	Calibration System	7.6519	+2.1 / -3.2	0.55100	A1-104
31151F3	Calibration System	7.6488	+2.0 / -2.5	0.53300	A1-107
31152F3	Calibration System	8.0063	+2.4 / -3.0	0.63390	A1-110
31153F3	Calibration System	7.5905	+3.4 / -4.9	0.64286	A1-113
31154F3	Calibration System	7.6103	+2.4 / -2.7	0.56158	A1-116
31158F3	Calibration System	7.8915	+2.1 / -2.4	0.52400	A1-119
31159F3	Calibration System	7.5992	+2.7 / -3.5	0.53200	A1-122
31160F3	Calibration System	8.0459	+2.3 / -2.9	0.49000	A1-125
31277F3	TWP	7.3071	+2.0 / -2.7	0.50400	A1-128
31283F3	TWP	8.1673	+1.8 / -3.0	0.60171	A1-131
31284F3	TWP	7.4162	+2.4 / -3.3	0.54600	A1-134
31289F3	TWP	8.1326	+1.8 / -2.6	0.65232	A1-137
31291F3	TWP	8.0697	+2.3 / -3.2	0.61842	A1-140
31294F3	NSA	8.8074	+1.6 / -2.0	0.54700	A1-143
31636F3	SGP	8.4622	+2.0 / -2.6	0.62111	A1-146

¹ CF = 1000 / R

³ Instrument's Effective Net IR Response

² See certificate for valid zenith angle range

Results Summary

		R@45 1	U 2	Rnet ³	
Instrument	Customer	(µV/W/m²)	(%)	$(\mu V/W/m^2)$	Page
31763E6	NSA	8.1351	+1.5 / -1.4	0	A1-149
31875E6	TWP	8.4797	+1.5 / -1.1	0	A1-152
32026F3	NSA	8.6807	+1.0 / -1.5	0.62415	A1-155
32882	TWP	8.5418	+3.3 / -2.6	0	A1-158
33247	SGP	9.2422	+4.5 / -2.4	0	A1-161
33251	TWP	8.2609	+2.9 / -2.5	0	A1-164
33262	SGP	8.1765	+2.7 / -3.2	0	A1-167
33267	SGP	9.0212	+2.2 / -2.4	0	A1-170
33273	SGP	9.6908	+1.8 / -2.5	0	A1-173
33279	SGP	8.8488	+2.3 / -2.9	0	A1-176
33386	TWP	8.9973	+3.1 / -2.8	0	A1-179
34281	TWP	10.043	+1.3 / -1.5	0	A1-182
35830F3	AMF#2	7.8801	+2.0 / -2.7	0.54714	A1-185
35864	SGP	8.4908	+2.2 / -2.4	0	A1-188
36291F3	AMF#2	9.0822	+1.8 / -2.4	0.60000	A1-191
37286E6	AMF	8.1646	+1.4 / -0.97	0	A1-194
37297F3	AMF	8.2387	+2.1 / -1.4	0.60000	A1-197
37300F3	NSA	8.8673	+1.2 / -1.5	0.60000	A1-200
37945E6	SGP	8.3957	+0.93 / -1.3	0	A1-203
37946E6	SGP	8.5527	+0.88 / -0.91	0	A1-206
38909F3	SGP	8.3182	+1.9 / -2.2	0.22000	A1-209
38910F3	SGP	7.9178	+1.3 / -1.7	0.22000	A1-212

Table 1. Results Summary

¹ CF = 1000 / R ² See certificate for valid zenith angle range Note: Environmental Conditions for BORCAL starts on page A1-215. ³ Instrument's Effective Net IR Response

Appendix 1 Instrument Details

Calibration Certificates: 3 pages for each radiometer (4 including Environmental Conditions) Environmental Conditions for BORCAL: Last Page of a Calibration Certificate. Note: This appears only once, at the end of Appendix 1.

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer (Ventilated)	Manufacturer:	Kipp & Zonen
Model:	CMP22	Serial Number:	200695
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability						
Measurement Type	Instrument	Calibration Date	Calibration Due Date			
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021			
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021			
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022			
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022			
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022			
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022			
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022			
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022			
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022			

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 200695 Kipp & Zonen CMP22

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of radiometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

[1]

Table 2	Instrument Responsivit	v (R	2) and Calibration '	Tvne-R	Standard Uncertainty	11(R)
	moti uniciti recoponoren	y (!''		I y pc-D	otuniaana oneertainty	, 4(2)

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	10.519	0.38	113.85	10.517	0.34	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	10.496	0.34	111.17	10.504	0.33	249.25
4	N/A	N/A	N/A	N/A	N/A	N/A	50	10.474	0.37	109.05	10.515	0.34	251.43
6	N/A	N/A	N/A	N/A	N/A	N/A	52	10.488	0.32	106.92	10.505	0.32	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	10.479	0.36	104.91	10.510	0.33	255.45
10	N/A	N/A	N/A	N/A	N/A	N/A	56	10.455	0.36	103.08	10.500	0.36	257.27
12	N/A	N/A	N/A	N/A	N/A	N/A	58	10.465	0.38	101.29	10.500	0.34	259.14
14	N/A	N/A	N/A	N/A	N/A	N/A	60	10.462	0.47	99.51	10.491	0.35	260.83
16	N/A	N/A	N/A	N/A	N/A	N/A	62	10.456	0.37	97.88	10.502	0.36	262.47
18	N/A	N/A	N/A	N/A	N/A	N/A	64	10.433	0.42	96.18	10.492	0.37	264.08
20	N/A	N/A	N/A	N/A	N/A	N/A	66	10.454	0.40	94.63	10.484	0.39	265.68
22	N/A	N/A	N/A	N/A	N/A	N/A	68	10.423	N/A	93.09	10.480	N/A	267.21
24	N/A	N/A	N/A	N/A	N/A	N/A	70	10.420	N/A	91.54	10.484	N/A	268.75
26	10.514	0.31	173.61	10.523	0.32	186.71	72	10.405	N/A	90.08	10.489	N/A	270.24
28	10.510	0.34	154.11	10.518	0.32	205.93	74	10.412	N/A	88.71	10.510	N/A	271.65
30	10.506	0.34	144.88	10.522	0.31	215.11	76	N/A	N/A	N/A	N/A	N/A	N/A
32	10.496	0.31	138.14	10.517	0.31	221.74	78	N/A	N/A	N/A	N/A	N/A	N/A
34	10.502	0.33	132.98	10.532	0.34	226.93	80	N/A	N/A	N/A	N/A	N/A	N/A
36	10.503	0.30	128.61	10.511	0.31	231.29	82	N/A	N/A	N/A	N/A	N/A	N/A
38	10.516	0.34	125.34	10.522	0.30	235.12	84	N/A	N/A	N/A	N/A	N/A	N/A
40	10.506	0.32	121.66	10.536	0.32	238.42	86	N/A	N/A	N/A	N/A	N/A	N/A
42	10.504	0.33	118.62	10.528	0.32	241.56	88	N/A	N/A	N/A	N/A	N/A	N/A
44	10.499	0.33	116.30	10.520	0.35	244.30	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 3. Type-B Standard Uncertainty vs Zenith Angle

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.47
Type-A Interpolating Function, u(int) (%)	±0.19
Combined Standard Uncertainty, $u(c)$ (%)	±0.51
Effective degrees of freedom, DF(c)	40513
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.00
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
10.508	0.087000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.92
Offset Uncertainty, U(off) (%)	+0.27 / -0.50
Expanded Uncertainty, U (%)	+1.2 / -1.4
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer (Ventilated)	Manufacturer:	Kipp & Zonen
Model:	CMP22	Serial Number:	200710
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

	Table 1. Traceability		
Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 200710 Kipp & Zonen CMP22

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

V = radiometer output voltage (microvolts),

Rnet = radiometer net infrared responsivity (μ V/W/m²), see Table 4,

Wnet = effective net infrared measured by pyrgeometer (W/m^2),

= Win - Wout = Win - $\sigma * Tc^4$

where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of radiometer (K).

Figure 2. Responsivity vs Local Standard Time

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2 Instrument Responsivity (R) and Calibration Type-B Stan	lard Uncertainty u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	9.8508	0.38	113.85	9.8732	0.34	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	9.8286	0.34	111.17	9.8643	0.33	249.25
4	N/A	N/A	N/A	N/A	N/A	N/A	50	9.8081	0.37	109.05	9.8731	0.34	251.43
6	N/A	N/A	N/A	N/A	N/A	N/A	52	9.8247	0.32	106.92	9.8647	0.32	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	9.8157	0.36	104.91	9.8682	0.33	255.45
10	N/A	N/A	N/A	N/A	N/A	N/A	56	9.7962	0.36	103.08	9.8550	0.36	257.27
12	N/A	N/A	N/A	N/A	N/A	N/A	58	9.8073	0.38	101.29	9.8520	0.34	259.14
14	N/A	N/A	N/A	N/A	N/A	N/A	60	9.8073	0.47	99.51	9.8469	0.35	260.83
16	N/A	N/A	N/A	N/A	N/A	N/A	62	9.8011	0.37	97.88	9.8573	0.36	262.47
18	N/A	N/A	N/A	N/A	N/A	N/A	64	9.7800	0.42	96.18	9.8450	0.37	264.08
20	N/A	N/A	N/A	N/A	N/A	N/A	66	9.8013	0.40	94.63	9.8400	0.39	265.68
22	N/A	N/A	N/A	N/A	N/A	N/A	68	9.7748	N/A	93.09	9.8381	N/A	267.21
24	N/A	N/A	N/A	N/A	N/A	N/A	70	9.7768	N/A	91.54	9.8382	N/A	268.75
26	9.8468	0.31	173.61	9.8565	0.32	186.71	72	9.7701	N/A	90.08	9.8405	N/A	270.24
28	9.8402	0.34	154.11	9.8565	0.32	205.93	74	9.7807	N/A	88.71	9.8568	N/A	271.65
30	9.8334	0.34	144.88	9.8629	0.31	215.11	76	N/A	N/A	N/A	N/A	N/A	N/A
32	9.8227	0.31	138.14	9.8599	0.31	221.74	78	N/A	N/A	N/A	N/A	N/A	N/A
34	9.8296	0.33	132.98	9.8762	0.34	226.93	80	N/A	N/A	N/A	N/A	N/A	N/A
36	9.8298	0.30	128.61	9.8582	0.31	231.29	82	N/A	N/A	N/A	N/A	N/A	N/A
38	9.8432	0.34	125.34	9.8705	0.30	235.12	84	N/A	N/A	N/A	N/A	N/A	N/A
40	9.8342	0.32	121.66	9.8839	0.32	238.42	86	N/A	N/A	N/A	N/A	N/A	N/A
42	9.8324	0.33	118.62	9.8788	0.32	241.56	88	N/A	N/A	N/A	N/A	N/A	N/A
44	9.8282	0.33	116.30	9.8734	0.35	244.30	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 3. Type-B Standard Uncertainty vs Zenith Angle

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.47
Type-A Interpolating Function, u(int) (%)	±0.19
Combined Standard Uncertainty, u(c) (%)	±0.51
Effective degrees of freedom, DF(c)	39959
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.00
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
9.8504	0.087000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.92
Offset Uncertainty, U(off) (%)	+0.34 / -0.55
Expanded Uncertainty, U (%)	+1.3 / -1.5
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Southern Great Plains Radiometer Calibration Facility

National Renewable Energy Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyrheliometer	Manufacturer:	Kipp & Zonen
Model:	CHP1	Serial Number:	200803
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45° , within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 200803 Kipp & Zonen CHP1

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win σ * Tc^4
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Z = zenith angle (degrees),D = reference diffuse irradiance (W/m²).

I = reference irradiance (W/m²), beam (B) or global (G)

where, G = B * COS(Z) + D,

[1]

Figure 2. Responsivity vs Local Standard Time

Table 2.	Instrument Responsivity	(R) and (Calibration Type-B	Standard Uncertainty.	u(B)
10010 2.	mouramont recoponentity	(ity and t	sansiadon iypo b	otaniaara onioortanity,	G(D)

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.4140	0.33	113.87	8.4120	0.32	246.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.4162	0.31	111.26	8.4114	0.29	249.20
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.4196	0.29	109.00	8.4099	0.29	251.38
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.4157	0.31	107.00	8.4099	0.31	253.46
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.4142	0.31	104.90	8.4129	0.29	255.41
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.4156	0.31	103.04	8.4106	0.31	257.35
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.4167	0.30	101.31	8.4111	0.30	259.10
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.4244	0.30	99.42	8.4117	0.30	260.79
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.4158	0.30	97.84	8.4092	0.30	262.48
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.4108	0.30	96.25	8.4119	0.30	264.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.4046	0.30	94.59	8.4119	0.30	265.64
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.4082	N/A	93.06	8.4096	N/A	267.18
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.4079	N/A	91.56	8.4121	N/A	268.71
26	8.4132	0.30	173.34	8.4109	0.32	186.63	72	8.4097	N/A	90.05	8.4137	N/A	270.21
28	8.4154	0.28	153.81	8.4124	0.29	205.97	74	8.4164	N/A	88.72	8.4115	N/A	271.61
30	8.4145	0.31	144.79	8.4117	0.30	215.02	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.4172	0.33	138.29	8.4111	0.31	221.70	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.4164	0.30	132.95	8.4095	0.31	226.96	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.4144	0.31	128.54	8.4171	0.31	231.22	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.4090	0.32	125.38	8.4105	0.33	235.24	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.4127	0.31	121.71	8.4113	0.32	238.49	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.4132	0.30	118.61	8.4113	0.29	241.60	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.4134	0.31	116.17	8.4134	0.32	244.32	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 3. Type-B Standard Uncertainty vs Zenith Angle

0.34

0.33

0.32-

(%) (B)n

0.30-

0.29

0.28-

u(B) Max = 0.33

5

• AM

35 40 45 50 55 60 65 70 75 80 85 90

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.33
Type-A Interpolating Function, u(int) (%)	±0.084
Combined Standard Uncertainty, u(c) (%)	±0.34
Effective degrees of freedom, DF(c)	233714
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.67
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

± An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.4117	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.65
Offset Uncertainty, U(off) (%)	+0.15 / -0.033
Expanded Uncertainty, U (%)	+0.80 / -0.68
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	27973F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30696F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

27973F3 Eppley PSP

Calibration Results 27973F3 Eppley PSP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- v = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

- - Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

[1]

Tahlo 2	Instrument Resi	nonsivity (R) ar	nd Calibration	Type-B Standard	Uncertainty u(R)
10010 2.	mourument rees	Jon Sivily (iv) u	ia ounoration	Type-D oluniaura	oncontainty, a(b)

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.3443	0.36	113.79	8.3976	0.39	246.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.3187	0.44	111.29	8.3803	0.38	249.26
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.2988	0.43	109.03	8.3890	0.43	251.44
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.3078	0.38	106.87	8.3782	0.40	253.51
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.2899	0.41	104.95	8.3835	0.41	255.47
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.2696	0.48	103.09	8.3707	0.43	257.28
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.2815	0.44	101.35	8.3913	0.46	259.15
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.3057	0.46	99.52	8.4019	0.48	260.83
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.3194	0.43	97.89	8.4449	0.48	262.48
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.3466	0.49	96.19	8.4621	0.51	264.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.3456	0.47	94.64	8.4565	0.54	265.69
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.2348	N/A	93.10	8.3718	N/A	267.22
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.1975	N/A	91.51	8.3388	N/A	268.76
26	8.4217	0.36	173.51	8.4298	0.34	186.40	72	8.1823	N/A	90.04	8.3280	N/A	270.25
28	8.4156	0.34	154.05	8.4198	0.36	205.96	74	8.1684	N/A	88.72	8.3223	N/A	271.70
30	8.4066	0.33	144.99	8.4156	0.35	215.00	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.3924	0.35	138.28	8.4092	0.35	221.68	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.3866	0.37	133.04	8.4266	0.37	226.84	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.3872	0.35	128.51	8.3911	0.36	231.31	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.3683	0.38	125.51	8.4064	0.36	235.14	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.3666	0.35	121.67	8.4173	0.38	238.52	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.3646	0.36	118.64	8.4049	0.36	241.62	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.3456	0.37	116.24	8.3964	0.40	244.32	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

0.54 0.52-0.50-0.48-0.46-(%) £0.44 @0.42-0.40-0.38-0.36-0.34-0.32-5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) u(B) Max = 0.54 DF Max = +Inf • AM × PM

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.54
Type-A Interpolating Function, u(int) (%)	±0.25
Combined Standard Uncertainty, $u(c)$ (%)	±0.59
Effective degrees of freedom, DF(c)	27799
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.2
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.3597	0.60000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.95
Offset Uncertainty, U(off) (%)	+0.80 / -1.1
Expanded Uncertainty, U (%)	+1.8 / -2.0
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	NIP	Serial Number:	29554E6
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 29554E6 Eppley NIP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2.	Instrument Responsivity (R) a	and Calibration Type-B	Standard Uncertainty, u(B)
----------	-------------------------------	------------------------	----------------------------

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.0600	0.33	113.85	8.0029	0.32	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.0501	0.32	111.24	7.9948	0.29	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.0494	0.33	109.01	8.0034	0.29	251.43
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.0586	0.29	106.92	7.9934	0.32	253.50
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.0505	0.31	104.94	8.0102	0.29	255.40
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.0633	0.33	103.03	7.9977	0.29	257.33
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.0643	0.30	101.40	8.0009	0.30	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.0931	0.34	99.56	8.0021	0.31	260.77
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.0817	0.32	97.82	8.0040	0.30	262.52
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.0970	0.36	96.23	8.0084	0.30	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.0853	0.30	94.58	8.0070	0.30	265.63
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.0912	N/A	93.04	8.0095	N/A	267.21
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.0939	N/A	91.55	8.0100	N/A	268.70
26	8.0008	0.30	173.43	8.0041	0.31	187.00	72	8.0961	N/A	90.03	8.0220	N/A	270.20
28	8.0118	0.31	153.85	7.9922	0.30	206.02	74	8.1136	N/A	88.71	8.0185	N/A	271.65
30	8.0116	0.30	144.62	7.9952	0.31	214.98	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.0078	0.30	138.25	7.9938	0.29	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.0222	0.30	132.92	8.0106	0.30	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.0269	0.29	128.49	7.9821	0.29	231.29	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.0470	0.32	125.32	7.9999	0.29	235.27	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.0435	0.30	121.60	8.0093	0.31	238.60	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.0432	0.31	118.63	8.0004	0.32	241.57	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.0494	0.32	116.23	7.9977	0.29	244.38	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.36
Type-A Interpolating Function, u(int) (%)	±0.19
Combined Standard Uncertainty, u(c) (%)	±0.40
Effective degrees of freedom, DF(c)	17295
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.79
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.0265	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.67
Offset Uncertainty, U(off) (%)	+0.83 / -0.55
Expanded Uncertainty, U (%)	+1.5 / -1.2
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	29619F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability									
Measurement Type	Instrument	Calibration Date	Calibration Due Date						
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021						
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021						
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022						
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022						
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022						
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022						
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022						
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022						
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022						

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

29619F3 Eppley PSP

Calibration Results 29619F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- v = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.4856	0.37	113.88	8.3224	0.35	246.89
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.4636	0.37	111.27	8.2901	0.36	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.4348	0.40	108.97	8.2728	0.34	251.39
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.4149	0.34	106.95	8.2352	0.34	253.46
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.4080	0.36	104.90	8.2247	0.40	255.42
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.3725	0.38	103.11	8.1982	0.36	257.35
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.3588	0.36	101.23	8.1791	0.39	259.11
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.3319	0.38	99.43	8.1613	0.38	260.79
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.3216	0.39	97.85	8.1566	0.40	262.44
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.3167	0.45	96.25	8.1439	0.42	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.3424	0.42	94.60	8.1386	0.44	265.65
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.3221	N/A	93.07	8.1330	N/A	267.18
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.2168	N/A	91.57	7.9799	N/A	268.72
26	8.5547	0.34	173.17	8.5271	0.31	186.81	72	8.1306	N/A	90.05	7.9350	N/A	270.22
28	8.5800	0.31	153.91	8.4659	0.31	205.99	74	8.0824	N/A	88.74	7.9089	N/A	271.62
30	8.5768	0.34	144.87	8.4247	0.32	214.94	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.5592	0.34	138.31	8.3927	0.31	221.59	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.5555	0.30	132.96	8.3654	0.34	226.97	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.5522	0.32	128.62	8.3001	0.32	231.33	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.5286	0.34	125.32	8.2977	0.33	235.08	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.5232	0.35	121.70	8.3155	0.34	238.54	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.5207	0.35	118.55	8.3203	0.36	241.52	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.4850	0.36	116.20	8.3309	0.34	244.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- I = reference irradiance (W/m²), beam (B) or global (G) where, G = B * COS(Z) + D,
 - - Z =zenith angle (degrees), D = reference diffuse irradiance (W/m²).

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.28
Combined Standard Uncertainty, u(c) (%)	±0.53
Effective degrees of freedom, DF(c)	11120
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.4031	0.69050

† Rnet determination date: 04/24/2007

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.78
Offset Uncertainty, U(off) (%)	+2.1 / -2.9
Expanded Uncertainty, U (%)	+2.8 / -3.7
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	NIP	Serial Number:	29743E6
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 29743E6 Eppley NIP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- v = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),

= Win - Wout = Win - $\sigma * Tc^4$

where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2. I	Instrument Res	ponsivity (R)	and Calibration	Type-B Stand	ard Uncertainty, u(B)

Zenith		AM			ΡM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.1825	0.33	113.85	8.1355	0.32	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.1715	0.32	111.24	8.1295	0.29	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.1663	0.33	109.01	8.1396	0.29	251.43
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.1694	0.29	106.92	8.1314	0.32	253.50
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.1707	0.31	104.94	8.1424	0.29	255.40
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.1739	0.33	103.03	8.1303	0.29	257.33
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.1709	0.30	101.40	8.1320	0.30	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.1830	0.34	99.56	8.1335	0.31	260.77
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.1788	0.32	97.82	8.1387	0.30	262.52
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.1951	0.36	96.23	8.1465	0.30	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.1926	0.30	94.58	8.1422	0.30	265.63
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.1975	N/A	93.04	8.1421	N/A	267.21
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.1998	N/A	91.55	8.1471	N/A	268.70
26	8.1334	0.30	173.43	8.1373	0.31	187.00	72	8.2090	N/A	90.03	8.1629	N/A	270.20
28	8.1416	0.31	153.85	8.1266	0.30	206.02	74	8.2329	N/A	88.71	8.1651	N/A	271.65
30	8.1400	0.30	144.62	8.1282	0.31	214.98	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.1367	0.30	138.25	8.1290	0.29	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.1448	0.30	132.92	8.1425	0.30	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.1482	0.29	128.49	8.1184	0.29	231.29	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.1679	0.32	125.32	8.1332	0.29	235.27	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.1647	0.30	121.60	8.1437	0.31	238.60	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.1651	0.31	118.63	8.1359	0.32	241.57	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.1643	0.32	116.23	8.1352	0.29	244.38	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.36
Type-A Interpolating Function, u(int) (%)	±0.19
Combined Standard Uncertainty, u(c) (%)	±0.40
Effective degrees of freedom, DF(c)	18044
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.79
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.1510	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.67
Offset Uncertainty, U(off) (%)	+0.39 / -0.40
Expanded Uncertainty, U (%)	+1.1 / -1.1
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°
° °	

(%)

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	NIP	Serial Number:	29856E6
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 29856E6 Eppley NIP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- v = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),

= Win - Wout = Win - $\sigma * Tc^4$

where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Figure 2. Responsivity vs Local Standard Time

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2. Instrument Responsivity (R) and Calibr	ration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.8780	0.33	113.85	7.8319	0.32	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.8684	0.32	111.24	7.8278	0.29	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.8655	0.33	109.01	7.8388	0.29	251.43
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.8669	0.29	106.92	7.8296	0.32	253.50
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.8692	0.31	104.94	7.8417	0.29	255.40
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.8733	0.33	103.03	7.8310	0.29	257.33
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.8694	0.30	101.40	7.8334	0.30	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.8833	0.34	99.56	7.8357	0.31	260.77
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.8767	0.32	97.82	7.8389	0.30	262.52
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.8923	0.36	96.23	7.8455	0.30	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.8894	0.30	94.58	7.8423	0.30	265.63
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.8932	N/A	93.04	7.8456	N/A	267.21
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.8954	N/A	91.55	7.8502	N/A	268.70
26	7.8228	0.30	173.43	7.8314	0.31	187.00	72	7.9095	N/A	90.03	7.8626	N/A	270.20
28	7.8299	0.31	153.85	7.8219	0.30	206.02	74	7.9341	N/A	88.71	7.8654	N/A	271.65
30	7.8290	0.30	144.62	7.8235	0.31	214.98	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.8261	0.30	138.25	7.8232	0.29	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.8353	0.30	132.92	7.8388	0.30	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.8404	0.29	128.49	7.8137	0.29	231.29	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.8624	0.32	125.32	7.8318	0.29	235.27	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.8580	0.30	121.60	7.8408	0.31	238.60	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.8617	0.31	118.63	7.8328	0.32	241.57	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.8628	0.32	116.23	7.8323	0.29	244.38	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.36
Type-A Interpolating Function, u(int) (%)	±0.22
Combined Standard Uncertainty, u(c) (%)	±0.42
Effective degrees of freedom, DF(c)	11467
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.82
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.8478	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

±0.67
+0.45 / -0.43
+1.1 / -1.1
+Inf
1.96
30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	NIP	Serial Number:	29869E6
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 29869E6 Eppley NIP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- v = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2	Instrument Respons	ivity (R) and	Calibration Type-F	8 Standard Uncertainty u(B)
	moti uniciti recopono	ivity (it) and	a oundration rype-	

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.5070	0.33	113.85	8.4591	0.32	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.4943	0.32	111.24	8.4596	0.29	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.4847	0.33	109.01	8.4653	0.29	251.43
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.4901	0.29	106.92	8.4576	0.32	253.50
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.4853	0.31	104.94	8.4698	0.29	255.40
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.4894	0.33	103.03	8.4631	0.29	257.33
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.4906	0.30	101.40	8.4639	0.30	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.5263	0.34	99.56	8.4613	0.31	260.77
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.5132	0.32	97.82	8.4700	0.30	262.52
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.5270	0.36	96.23	8.4701	0.30	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.5199	0.30	94.58	8.4658	0.30	265.63
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.5157	N/A	93.07	8.4630	N/A	267.21
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.5220	N/A	91.55	8.4649	N/A	268.70
26	8.4575	0.30	173.43	8.4639	0.31	187.00	72	8.5210	N/A	90.03	8.4798	N/A	270.20
28	8.4624	0.31	153.85	8.4547	0.30	206.02	74	8.5412	N/A	88.71	8.4826	N/A	271.65
30	8.4603	0.30	144.62	8.4574	0.31	214.98	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.4553	0.30	138.25	8.4570	0.29	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.4692	0.30	132.92	8.4753	0.30	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.4759	0.29	128.49	8.4449	0.29	231.29	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.4905	0.32	125.32	8.4623	0.29	235.27	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.4870	0.30	121.60	8.4731	0.31	238.60	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.4900	0.31	118.63	8.4654	0.32	241.57	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.4910	0.32	116.23	8.4612	0.29	244.38	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.36
Type-A Interpolating Function, u(int) (%)	±0.21
Combined Standard Uncertainty, $u(c)$ (%)	±0.42
Effective degrees of freedom, DF(c)	12234
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.81
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.4751	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

±0.67
+0.60 / -0.36
+1.3 / -1.0
+Inf
1.96
30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	29913F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30696F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

29913F3 Eppley PSP
Calibration Results 29913F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity ($\mu V/W/m^2$), see Table 4,
- *Wnet* = effective net infrared measured by pyrgeometer (W/m^2),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

- Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

[1]

Tahla 2	Instrument Res	noncivity (P) a	nd Calibration	Type_R Standard	Uncortainty u/R)
	mati ument itea	polisivity (it) a		Type-D Standaru	oncertainty, u(D)

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.5870	0.33	113.79	7.6424	0.34	246.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.5660	0.41	111.29	7.6233	0.33	249.26
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.5427	0.40	109.03	7.6251	0.38	251.44
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.5437	0.34	106.87	7.6108	0.34	253.51
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.5270	0.37	104.95	7.6039	0.35	255.47
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.5076	0.45	103.09	7.5834	0.36	257.28
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.5036	0.40	101.35	7.5787	0.39	259.15
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.5106	0.42	99.52	7.5760	0.41	260.83
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.4956	0.39	97.89	7.5911	0.40	262.48
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.4970	0.44	96.19	7.5853	0.41	264.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.5158	0.42	94.64	7.5926	0.43	265.69
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.4878	N/A	93.10	7.5200	N/A	267.22
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.3842	N/A	91.51	7.4518	N/A	268.76
26	7.7163	0.33	173.51	7.7282	0.32	186.40	72	7.3421	N/A	90.04	7.4314	N/A	270.25
28	7.7070	0.32	154.05	7.7261	0.33	205.96	74	7.2974	N/A	88.72	7.4151	N/A	271.65
30	7.6951	0.30	144.99	7.7189	0.32	215.00	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.6828	0.33	138.28	7.7069	0.32	221.68	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.6725	0.34	133.04	7.7174	0.34	226.84	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.6682	0.32	128.51	7.6789	0.32	231.31	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.6373	0.35	125.51	7.6819	0.33	235.14	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.6387	0.31	121.67	7.6822	0.35	238.52	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.6309	0.32	118.64	7.6625	0.32	241.62	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.6034	0.34	116.24	7.6456	0.36	244.32	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.24
Combined Standard Uncertainty, $u(c)$ (%)	±0.51
Effective degrees of freedom, DF(c)	16921
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.00
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.6097	0.53900

† Rnet determination date: 03/31/2006

Table 5. Uncertainty using R @ 45°

±0.88
+1.4 / -1.4
+2.3 / -2.3
+Inf
1.96
30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	29915F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

	Table 1. Traceability		
Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

29915F3 Eppley PSP

Calibration Results 29915F3 Eppley PSP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G) where, G = B * COS(Z) + D,

- Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

[1]

Jure 2. Responsivity vs Local Standard Time
Jure 2. Responsivity vs Local Standard Time

Table 2.	Instrument Responsivity ((R) and Calibration	Type-B Standard Uncertainty, u/B
		(

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.4419	0.37	113.88	7.4308	0.35	246.89
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.4216	0.37	111.27	7.4048	0.36	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.3876	0.40	108.97	7.4031	0.34	251.39
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.3729	0.34	106.95	7.3801	0.34	253.46
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.3616	0.37	104.90	7.3760	0.40	255.42
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.3311	0.38	103.11	7.3463	0.36	257.35
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.3231	0.36	101.23	7.3310	0.40	259.11
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.3135	0.39	99.43	7.3178	0.39	260.79
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.2899	0.39	97.85	7.3094	0.40	262.44
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.2895	0.45	96.25	7.3093	0.42	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.3149	0.42	94.60	7.3099	0.44	265.65
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.3176	N/A	93.07	7.3383	N/A	267.18
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.2373	N/A	91.57	7.2542	N/A	268.72
26	7.5467	0.34	173.17	7.5540	0.31	186.81	72	7.0969	N/A	90.05	7.2198	N/A	270.22
28	7.5372	0.31	153.91	7.5416	0.31	205.99	74	7.0302	N/A	88.74	7.2262	N/A	271.62
30	7.5292	0.34	144.87	7.5331	0.32	214.94	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.5155	0.34	138.31	7.5231	0.31	221.59	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.5149	0.30	132.96	7.5219	0.34	226.97	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.5056	0.32	128.62	7.4847	0.32	231.33	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.4866	0.34	125.32	7.4794	0.33	235.08	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.4779	0.35	121.70	7.4802	0.34	238.54	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.4703	0.35	118.55	7.4654	0.36	241.52	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.4447	0.36	116.20	7.4504	0.34	244.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.28
Combined Standard Uncertainty, $u(c)$ (%)	±0.54
Effective degrees of freedom, DF(c)	10455
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.1
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.4381	0.63274

† Rnet determination date: 06/09/2006

Table 5. Uncertainty using R @ 45°

±0.78
+1.3 / -1.7
+2.1 / -2.5
+Inf
1.96
30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	NIP	Serial Number:	29934E6
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 29934E6 Eppley NIP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2.	Instrument Res	ponsivity (R)	and Calibration 1	vpe-B Standard U	ncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.3777	0.33	113.85	8.3029	0.32	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.3577	0.32	111.24	8.2963	0.29	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.3590	0.33	109.01	8.3005	0.29	251.43
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.3678	0.29	106.92	8.2897	0.32	253.50
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.3594	0.31	104.94	8.3055	0.29	255.40
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.3720	0.33	103.03	8.2919	0.29	257.33
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.3785	0.30	101.40	8.2901	0.30	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.4106	0.34	99.56	8.2933	0.31	260.77
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.3902	0.32	97.82	8.2969	0.30	262.52
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.4001	0.36	96.23	8.3002	0.30	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.3891	0.30	94.58	8.2965	0.30	265.63
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.3909	N/A	93.04	8.2912	N/A	267.21
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.3911	N/A	91.55	8.2956	N/A	268.70
26	8.3045	0.30	173.43	8.3095	0.31	187.00	72	8.3893	N/A	90.03	8.3106	N/A	270.20
28	8.3149	0.31	153.85	8.2978	0.30	206.02	74	8.4075	N/A	88.71	8.3022	N/A	271.65
30	8.3129	0.30	144.62	8.3001	0.31	214.98	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.3126	0.30	138.25	8.2990	0.29	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.3306	0.30	132.92	8.3159	0.30	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.3325	0.29	128.49	8.2869	0.29	231.29	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.3579	0.32	125.32	8.3060	0.29	235.27	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.3506	0.30	121.60	8.3178	0.31	238.60	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.3496	0.31	118.63	8.3044	0.32	241.57	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.3592	0.32	116.23	8.2934	0.29	244.38	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

0.36-

0.35

0.34-

0.33-

€ @0.32-%

0.31-

0.30-

0.29

0.28

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.36
Type-A Interpolating Function, u(int) (%)	±0.21
Combined Standard Uncertainty, u(c) (%)	±0.41
Effective degrees of freedom, DF(c)	12451
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.81
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

± An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.3291	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.67
Offset Uncertainty, U(off) (%)	+0.98 / -0.51
Expanded Uncertainty, U (%)	+1.6 / -1.2
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	NIP	Serial Number:	29938E6
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 29938E6 Eppley NIP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- *Wnet* = effective net infrared measured by pyrgeometer (W/m^2),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.3491	0.33	113.85	8.3056	0.32	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.3308	0.32	111.24	8.3013	0.29	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.3313	0.33	109.01	8.3079	0.29	251.43
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.3395	0.29	106.92	8.3018	0.32	253.50
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.3332	0.31	104.94	8.3126	0.29	255.40
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.3393	0.33	103.03	8.3030	0.29	257.33
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.3393	0.30	101.40	8.3036	0.30	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.3643	0.34	99.56	8.3083	0.31	260.77
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.3587	0.32	97.82	8.3074	0.30	262.52
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.3668	0.36	96.23	8.3120	0.30	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.3502	0.30	94.58	8.3117	0.30	265.63
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.3572	N/A	93.04	8.3115	N/A	267.21
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.3511	N/A	91.55	8.3149	N/A	268.70
26	8.2949	0.30	173.43	8.3004	0.31	187.00	72	8.3553	N/A	90.03	8.3245	N/A	270.20
28	8.2996	0.31	153.85	8.2924	0.30	206.02	74	8.3775	N/A	88.71	8.3237	N/A	271.65
30	8.2990	0.30	144.62	8.2949	0.31	214.98	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.2986	0.30	138.25	8.2955	0.29	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.3115	0.30	132.92	8.3073	0.30	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.3162	0.29	128.49	8.2896	0.29	231.29	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.3330	0.32	125.32	8.3050	0.29	235.27	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.3270	0.30	121.60	8.3133	0.31	238.60	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.3258	0.31	118.63	8.3024	0.32	241.57	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.3314	0.32	116.23	8.3047	0.29	244.38	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.36
Type-A Interpolating Function, u(int) (%)	±0.15
Combined Standard Uncertainty, $u(c)$ (%)	±0.39
Effective degrees of freedom, DF(c)	33627
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.76
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.3191	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.67
Offset Uncertainty, U(off) (%)	+0.54 / -0.35
Expanded Uncertainty, U (%)	+1.2 / -1.0
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	30617F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability				
Measurement Type	Instrument	Calibration Date	Calibration Due Date	
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021	
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021	
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022	
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022	
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022	
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022	
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022	
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022	
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022	

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

30617F3 Eppley PSP

Calibration Results 30617F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity ($\mu V/W/m^2$), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Figure 2. Responsivity vs Local Standard Time

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2	Instrument Resi	onsivity (R) and	1 Calibration Type-B	Standard Uncertainty u(B)
10010 2.	into thanno int i too		a ounoration rypo b	

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.9902	0.37	113.88	7.9725	0.35	246.89
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.9611	0.37	111.27	7.9472	0.36	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.9363	0.40	108.97	7.9426	0.34	251.39
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.9145	0.34	106.95	7.9189	0.34	253.46
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.9027	0.37	104.90	7.9103	0.40	255.42
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.8678	0.38	103.11	7.8791	0.36	257.35
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.8573	0.36	101.23	7.8557	0.39	259.11
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.8346	0.38	99.43	7.8235	0.39	260.79
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.8043	0.39	97.82	7.7994	0.40	262.44
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.8058	0.45	96.25	7.7814	0.42	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.8419	0.42	94.60	7.7916	0.44	265.65
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.8568	N/A	93.07	7.8231	N/A	267.18
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.8249	N/A	91.57	7.7918	N/A	268.72
26	8.0914	0.34	173.17	8.0937	0.31	186.81	72	7.7236	N/A	90.05	7.7538	N/A	270.22
28	8.0848	0.31	153.91	8.0784	0.31	205.99	74	7.6554	N/A	88.74	7.7455	N/A	271.62
30	8.0720	0.34	144.87	8.0698	0.32	214.94	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.0561	0.34	138.31	8.0633	0.31	221.59	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.0581	0.30	132.96	8.0661	0.34	226.97	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.0559	0.32	128.62	8.0234	0.32	231.33	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.0371	0.34	125.32	8.0240	0.33	235.08	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.0283	0.35	121.70	8.0228	0.34	238.54	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.0205	0.35	118.55	8.0095	0.36	241.52	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.9918	0.36	116.20	7.9899	0.34	244.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.27
Combined Standard Uncertainty, $u(c)$ (%)	±0.53
Effective degrees of freedom, DF(c)	12622
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.9826	0.67027

† Rnet determination date: 04/24/2007

Table 5. Uncertainty using R @ 45°

±0.78
+1.1 / -2.0
+1.9 / -2.8
+Inf
1.96
30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	30653F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability					
Measurement Type	Instrument	Calibration Date	Calibration Due Date		
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021		
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021		
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022		
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022		
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022		
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022		
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022		
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022		
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022		

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

30653F3 Eppley PSP

Calibration Results 30653F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Figure 2. Responsivity vs Local Standard Time

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 0. Instrument Descensivity (D) and Calibustian Type D Otendard Uncertainty (C							
Lable 7 Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty 10(B	Table 2	Instrument Responsivi	ty (R) and	d Calibration	Type-B	Standard Uncertaint	v u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.1386	0.37	113.88	8.1332	0.35	246.89
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.1171	0.37	111.27	8.1092	0.35	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.0897	0.39	108.97	8.1096	0.33	251.39
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.0700	0.34	106.95	8.0862	0.34	253.46
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.0574	0.36	104.90	8.0696	0.39	255.42
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.0222	0.38	103.11	8.0374	0.36	257.35
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.0212	0.36	101.23	8.0138	0.39	259.11
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.0055	0.38	99.43	7.9895	0.38	260.79
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.9956	0.38	97.85	7.9874	0.39	262.44
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.0091	0.45	96.25	7.9860	0.41	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.0490	0.41	94.60	7.9902	0.43	265.65
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.0511	N/A	93.07	7.9995	N/A	267.18
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.9376	N/A	91.57	7.8908	N/A	268.72
26	8.2512	0.33	173.17	8.2562	0.31	186.81	72	7.8254	N/A	90.05	7.8575	N/A	270.22
28	8.2385	0.31	153.91	8.2411	0.31	205.99	74	7.7154	N/A	88.74	7.8352	N/A	271.62
30	8.2241	0.34	144.87	8.2291	0.32	214.94	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.2023	0.34	138.31	8.2330	0.30	221.59	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.1966	0.30	132.96	8.2349	0.33	226.97	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.1928	0.32	128.62	8.1981	0.32	231.33	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.1798	0.34	125.32	8.1901	0.33	235.08	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.1724	0.35	121.70	8.1885	0.33	238.54	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.1658	0.35	118.55	8.1755	0.35	241.52	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.1393	0.35	116.20	8.1592	0.34	244.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.30
Combined Standard Uncertainty, $u(c)$ (%)	±0.54
Effective degrees of freedom, DF(c)	8616
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.1
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.1393	0.61000

† Rnet determination date: 04/18/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.77
Offset Uncertainty, U(off) (%)	+1.2 / -1.8
Expanded Uncertainty, U (%)	+1.9 / -2.6
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

References:

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5

[6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	30665F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

30665F3 Eppley PSP

Calibration Results 30665F3 Eppley PSP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

8.3

8.1

Responsivity (µV/W/m²) -6.2 -6.2 -6.2 -6.2

7.6

7.5

7.4-1 0

• AM 8.2-× PM

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,

Zenith Angle (degrees)

- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4,

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B	Table 2.	Instrument Responsivity (R) and	Calibration Type-B Standard	Uncertainty, u(B)
---	----------	---------------------------------	-----------------------------	-------------------

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.0157	0.37	113.88	7.9621	0.35	246.89
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.9819	0.37	111.27	7.9349	0.36	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.9451	0.40	108.97	7.9226	0.34	251.39
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.9150	0.34	106.95	7.8888	0.35	253.46
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.8895	0.37	104.90	7.8635	0.40	255.42
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.8417	0.38	103.11	7.8239	0.36	257.35
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.8278	0.36	101.23	7.7936	0.40	259.11
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.8084	0.39	99.43	7.7735	0.39	260.79
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.8013	0.39	97.85	7.7700	0.40	262.44
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.8015	0.45	96.25	7.7625	0.42	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.7988	0.42	94.60	7.7470	0.44	265.65
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.6941	N/A	93.07	7.6547	N/A	267.18
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.6386	N/A	91.57	7.5771	N/A	268.72
26	8.1668	0.33	173.13	8.1683	0.31	186.81	72	7.6037	N/A	90.05	7.5428	N/A	270.22
28	8.1585	0.31	153.91	8.1438	0.31	205.99	74	7.5468	N/A	88.74	7.5145	N/A	271.62
30	8.1429	0.34	144.87	8.1223	0.32	214.94	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.1211	0.34	138.31	8.1164	0.31	221.59	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.1121	0.30	132.96	8.1084	0.34	226.97	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.1048	0.32	128.62	8.0606	0.32	231.33	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.0811	0.34	125.32	8.0464	0.33	235.08	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.0718	0.35	121.71	8.0358	0.34	238.54	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.0550	0.35	118.55	8.0169	0.36	241.52	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.0250	0.36	116.20	7.9902	0.34	244.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

18:00

20:00

I = reference irradiance (W/m²), beam (B) or global (G)

- where, G = B * COS(Z) + D,
 - Z =zenith angle (degrees),

Local Standard Time

D = reference diffuse irradiance (W/m²).

0.46-0.44 0.42-0 40-€) @0.38-% 0.36 0.34 0.32 0.30-5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) u(B) Max = 0.45 DF Max = +Inf • AM × PM

Table 3. Uncertainty using Spline Interpolation ‡

±0.45
±0.28
±0.54
10508
1.96
±1.1
26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.9960	0.68202

† Rnet determination date: 04/26/2007

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.78
Offset Uncertainty, U(off) (%)	+1.8 / -2.8
Expanded Uncertainty, U (%)	+2.6 / -3.6
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	30673F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30696F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

30673F3 Eppley PSP

Calibration Results 30673F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.7291	0.33	113.79	7.6921	0.35	246.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.7145	0.41	111.29	7.6722	0.33	249.26
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.6993	0.40	109.03	7.6713	0.38	251.44
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.7076	0.34	106.87	7.6551	0.35	253.51
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.6906	0.37	104.95	7.6490	0.35	255.47
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.6710	0.45	103.09	7.6309	0.36	257.28
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.6682	0.40	101.35	7.6222	0.40	259.15
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.6716	0.42	99.52	7.6074	0.41	260.83
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.6501	0.39	97.89	7.6200	0.40	262.48
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.6509	0.44	96.19	7.6204	0.42	264.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.6712	0.42	94.64	7.6268	0.44	265.69
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.6836	N/A	93.10	7.6408	N/A	267.22
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.6704	N/A	91.51	7.6073	N/A	268.76
26	7.7888	0.34	173.51	7.7913	0.32	186.40	72	7.5833	N/A	90.04	7.5363	N/A	270.25
28	7.7893	0.32	154.05	7.7816	0.34	205.96	74	7.5897	N/A	88.72	7.5326	N/A	271.65
30	7.7818	0.30	144.99	7.7722	0.32	215.00	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.7739	0.33	138.28	7.7609	0.32	221.68	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.7685	0.34	133.04	7.7697	0.34	226.84	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.7708	0.32	128.51	7.7304	0.33	231.31	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.7535	0.35	125.51	7.7320	0.33	235.14	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.7538	0.31	121.67	7.7354	0.35	238.52	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.7506	0.32	118.64	7.7157	0.32	241.62	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.7295	0.34	116.24	7.6995	0.36	244.32	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- *I* = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.24
Combined Standard Uncertainty, $u(c)$ (%)	±0.51
Effective degrees of freedom, DF(c)	17359
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.00
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

‡ An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7,7023	0.57412

+ Rnet determination date: 04/26/2007

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.88
Offset Uncertainty, U(off) (%)	+1.0 / -1.2
Expanded Uncertainty, U (%)	+1.9 / -2.1
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	30709F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability							
Measurement Type	Instrument	Calibration Date	Calibration Due Date				
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021				
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021				
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022				
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022				
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022				

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

30709F3 Eppley PSP

Calibration Results 30709F3 Eppley PSP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

where, G = B * COS(Z) + D, Z = zenith angle (degrees),

I = reference irradiance (W/m²), beam (B) or global (G)

D = reference diffuse irradiance (W/m²).

[1]

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.8467	0.37	113.88	7.8215	0.35	246.89
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.8156	0.37	111.27	7.7933	0.35	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.7762	0.41	109.04	7.7907	0.34	251.39
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.7600	0.34	106.95	7.7673	0.34	253.46
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.7444	0.36	104.90	7.7520	0.39	255.42
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.7155	0.38	103.11	7.7208	0.36	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.6971	0.36	101.23	7.6935	0.39	259.11
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.6876	0.38	99.43	7.6704	0.38	260.79
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.6554	0.39	97.85	7.6526	0.39	262.44
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.6471	0.45	96.25	7.6369	0.41	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.6646	0.42	94.60	7.6257	0.43	265.65
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.6619	N/A	93.07	7.6437	N/A	267.08
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.6611	N/A	91.57	7.6074	N/A	268.72
26	7.9501	0.33	173.13	7.9478	0.31	186.81	72	7.5380	N/A	90.05	7.4856	N/A	270.17
28	7.9511	0.31	153.91	7.9066	0.31	205.99	74	7.5170	N/A	88.74	7.4443	N/A	271.62
30	7.9451	0.34	144.87	7.8838	0.32	214.94	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.9237	0.34	138.31	7.8740	0.31	221.59	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.9180	0.30	132.96	7.8748	0.33	226.97	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.9119	0.32	128.62	7.8485	0.32	231.33	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.8927	0.34	125.32	7.8551	0.33	235.08	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.8854	0.35	121.70	7.8570	0.33	238.54	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.8757	0.35	118.55	7.8469	0.36	241.52	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.8468	0.36	116.20	7.8387	0.34	244.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

0.46-0.7-+U(int) 0.6-0.44 0.4 0.42-⊗ 0.2-0 40-€ @0.38-% Residuals -0.0-0.36 -0.2 0.34 -0.4 0.32 -U(int -0.6-0.30--0.7 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 ά 10 Zenith Angle (degrees) u(B) Max = 0.45 DF Max = +Inf • AM × PM

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.31
Combined Standard Uncertainty, $u(c)$ (%)	±0.55
Effective degrees of freedom, DF(c)	8133
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.1
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.8371	0.61495

† Rnet determination date: 06/07/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.80
Offset Uncertainty, U(off) (%)	+1.4 / -2.1
Expanded Uncertainty, U (%)	+2.2 / -2.9
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	NIP	Serial Number:	30717E6
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 30717E6 Eppley NIP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Tahla 2	Instrument Res	noneivity (P	and Calibration	Type-B Standard	Incortainty u(R)
	mati ument ixea	polisivity (it		Type-D Otanuart	i Oncertainty, u(D)

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.4134	0.33	113.85	8.3257	0.32	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.4085	0.32	111.24	8.3183	0.29	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.4080	0.33	109.01	8.3289	0.29	251.43
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.4102	0.29	106.92	8.3175	0.32	253.50
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.4118	0.31	104.94	8.3332	0.29	255.40
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.4168	0.33	103.03	8.3205	0.29	257.33
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.4121	0.30	101.40	8.3258	0.30	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.4266	0.34	99.56	8.3245	0.31	260.77
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.4173	0.32	97.82	8.3324	0.30	262.52
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.4396	0.36	96.23	8.3403	0.30	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.4302	0.30	94.58	8.3354	0.30	265.63
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.4307	N/A	93.04	8.3343	N/A	267.21
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.4271	N/A	91.55	8.3374	N/A	268.70
26	8.3381	0.30	173.43	8.3341	0.31	187.00	72	8.4250	N/A	90.03	8.3530	N/A	270.20
28	8.3499	0.31	153.85	8.3181	0.30	206.02	74	8.4450	N/A	88.71	8.3531	N/A	271.65
30	8.3481	0.30	144.62	8.3223	0.31	214.98	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.3525	0.30	138.25	8.3189	0.29	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.3683	0.30	132.92	8.3344	0.30	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.3709	0.29	128.49	8.3033	0.29	231.29	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.3955	0.32	125.32	8.3224	0.29	235.27	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.3911	0.30	121.60	8.3354	0.31	238.60	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.3914	0.31	118.63	8.3219	0.32	241.57	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.4029	0.32	116.23	8.3188	0.29	244.38	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.36
Type-A Interpolating Function, u(int) (%)	±0.17
Combined Standard Uncertainty, $u(c)$ (%)	±0.39
Effective degrees of freedom, DF(c)	25865
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.77
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.3620	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.67
Offset Uncertainty, U(off) (%)	+0.77 / -0.70
Expanded Uncertainty, U (%)	+1.4 / -1.4
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	NIP	Serial Number:	30718E6
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 30718E6 Eppley NIP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.3065	0.33	113.85	8.2620	0.32	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.3063	0.32	111.24	8.2563	0.29	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.3014	0.33	109.01	8.2656	0.29	251.43
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.3033	0.29	106.92	8.2571	0.32	253.50
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.3062	0.31	104.94	8.2702	0.29	255.40
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.3118	0.33	103.03	8.2579	0.29	257.33
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.3091	0.30	101.40	8.2609	0.30	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.3227	0.34	99.56	8.2665	0.31	260.77
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.3148	0.32	97.82	8.2707	0.30	262.52
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.3369	0.36	96.23	8.2776	0.30	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.3402	0.30	94.58	8.2707	0.30	265.63
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.3429	N/A	93.04	8.2741	N/A	267.21
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.3486	N/A	91.55	8.2801	N/A	268.70
26	8.2577	0.30	173.43	8.2667	0.31	187.00	72	8.3590	N/A	90.03	8.2941	N/A	270.20
28	8.2559	0.31	153.85	8.2543	0.30	206.02	74	8.3869	N/A	88.71	8.2968	N/A	271.65
30	8.2538	0.30	144.62	8.2579	0.31	214.98	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.2535	0.30	138.25	8.2524	0.29	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.2652	0.30	132.92	8.2687	0.30	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.2692	0.29	128.49	8.2422	0.29	231.29	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.2934	0.32	125.32	8.2635	0.29	235.27	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.2917	0.30	121.60	8.2753	0.31	238.60	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.2970	0.31	118.63	8.2638	0.32	241.57	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.2955	0.32	116.23	8.2607	0.29	244.38	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.36
Type-A Interpolating Function, u(int) (%)	±0.22
Combined Standard Uncertainty, $u(c)$ (%)	±0.42
Effective degrees of freedom, DF(c)	11667
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.82
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.2769	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.67
Offset Uncertainty, U(off) (%)	+0.55 / -0.42
Expanded Uncertainty, U (%)	+1.2 / -1.1
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	NIP	Serial Number:	30722E6
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 30722E6 Eppley NIP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

r ;

Figure 2. Responsivity vs Local Standard Time

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

[1]

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.6279	0.33	113.85	8.5628	0.32	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.6110	0.32	111.24	8.5557	0.29	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.6123	0.33	109.01	8.5676	0.29	251.43
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.6153	0.29	106.92	8.5529	0.32	253.50
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.6183	0.31	104.94	8.5691	0.29	255.40
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.6195	0.33	103.03	8.5557	0.29	257.33
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.6177	0.30	101.40	8.5606	0.30	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.6328	0.34	99.56	8.5551	0.31	260.77
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.6278	0.32	97.82	8.5674	0.30	262.52
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.6478	0.36	96.23	8.5804	0.30	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.6433	0.30	94.58	8.5727	0.30	265.63
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.6472	N/A	93.04	8.5733	N/A	267.21
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.6508	N/A	91.55	8.5750	N/A	268.70
26	8.5598	0.30	173.43	8.5668	0.31	187.00	72	8.6622	N/A	90.03	8.5958	N/A	270.20
28	8.5699	0.31	153.85	8.5547	0.30	206.02	74	8.6920	N/A	88.71	8.5943	N/A	271.65
30	8.5669	0.30	144.62	8.5543	0.31	214.98	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.5664	0.30	138.25	8.5564	0.29	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.5789	0.30	132.92	8.5662	0.30	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.5824	0.29	128.49	8.5378	0.29	231.29	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.6039	0.32	125.32	8.5528	0.29	235.27	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.6033	0.30	121.60	8.5698	0.31	238.60	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.6081	0.31	118.63	8.5641	0.32	241.57	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.6066	0.32	116.23	8.5576	0.29	244.38	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.36
Type-A Interpolating Function, u(int) (%)	±0.21
Combined Standard Uncertainty, $u(c)$ (%)	±0.41
Effective degrees of freedom, DF(c)	12924
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.81
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.5855	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.67
Offset Uncertainty, U(off) (%)	+0.55 / -0.56
Expanded Uncertainty, U (%)	+1.2 / -1.2
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	30776F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

	Table 1. Traceability		
Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

30776F3 Eppley PSP
Calibration Results 30776F3 Eppley PSP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- *Wnet* = effective net infrared measured by pyrgeometer (W/m^2),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2.	Instrument Responsivity	(R) and Calibration	Type-B Standard Uncertai	ntv. u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.1333	0.37	113.88	8.1076	0.35	246.89
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.0956	0.37	111.27	8.0811	0.36	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.0724	0.40	108.97	8.0714	0.34	251.39
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.0585	0.34	106.95	8.0473	0.34	253.46
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.0373	0.36	104.90	8.0275	0.39	255.42
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.9984	0.38	103.11	7.9749	0.36	257.35
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.9931	0.36	101.23	7.9430	0.39	259.11
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.9725	0.38	99.43	7.9095	0.38	260.79
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.9713	0.39	97.85	7.9092	0.40	262.44
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.9755	0.45	96.25	7.9489	0.41	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.0044	0.42	94.60	7.9820	0.43	265.65
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.9978	N/A	93.07	8.0085	N/A	267.18
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.8357	N/A	91.57	7.8959	N/A	268.72
26	8.2371	0.33	173.13	8.2411	0.31	186.81	72	7.7236	N/A	90.05	7.8836	N/A	270.22
28	8.2263	0.31	153.91	8.2224	0.31	205.99	74	7.6614	N/A	88.74	7.8837	N/A	271.62
30	8.2146	0.34	144.87	8.2128	0.32	214.94	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.1997	0.34	138.31	8.2043	0.31	221.59	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.1947	0.30	132.96	8.2140	0.33	226.97	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.1920	0.32	128.62	8.1669	0.32	231.33	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.1783	0.34	125.32	8.1718	0.33	235.08	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.1720	0.35	121.71	8.1713	0.33	238.54	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.1573	0.35	118.55	8.1520	0.36	241.52	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.1352	0.36	116.20	8.1231	0.34	244.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

I = reference irradiance (W/m²), beam (B) or global (G)

- where, G = B * COS(Z) + D,
 - Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.28
Combined Standard Uncertainty, $u(c)$ (%)	±0.53
Effective degrees of freedom, DF(c)	10989
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

± An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.1196	0.64865

† Rnet determination date: 04/24/2007

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.77
Offset Uncertainty, U(off) (%)	+1.2 / -2.6
Expanded Uncertainty, U (%)	+1.9 / -3.4
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	30820F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

30820F3 Eppley PSP

Calibration Results 30820F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.8768	0.37	113.88	7.7925	0.35	246.89
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.8475	0.37	111.27	7.7635	0.36	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.8303	0.40	108.97	7.7513	0.34	251.39
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.8206	0.34	106.95	7.7266	0.34	253.46
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.8062	0.36	104.90	7.7199	0.39	255.42
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.7735	0.38	103.11	7.6869	0.36	257.35
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.7699	0.36	101.23	7.6660	0.39	259.11
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.7499	0.38	99.43	7.6391	0.38	260.79
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.7334	0.39	97.85	7.6274	0.40	262.44
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.7415	0.45	96.25	7.6322	0.41	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.7820	0.42	94.60	7.6415	0.44	265.65
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.8031	N/A	93.07	7.6542	N/A	267.18
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.7444	N/A	91.57	7.5409	N/A	268.72
26	7.9383	0.33	173.13	7.9372	0.31	186.81	72	7.6533	N/A	90.05	7.5354	N/A	270.22
28	7.9389	0.31	153.91	7.9083	0.31	205.99	74	7.5844	N/A	88.74	7.5360	N/A	271.62
30	7.9330	0.34	144.87	7.8946	0.32	214.94	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.9235	0.34	138.31	7.8847	0.31	221.59	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.9186	0.30	132.96	7.8960	0.33	226.97	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.9198	0.32	128.62	7.8530	0.32	231.33	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.9104	0.34	125.32	7.8567	0.33	235.08	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.9054	0.35	121.70	7.8573	0.34	238.54	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.8981	0.35	118.55	7.8375	0.36	241.52	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.8758	0.36	116.20	7.8087	0.34	244.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- I = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,
 - Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.27
Combined Standard Uncertainty, $u(c)$ (%)	±0.53
Effective degrees of freedom, DF(c)	12347
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.8334	0.63499

† Rnet determination date: 05/09/2007

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.77
Offset Uncertainty, U(off) (%)	+1.3 / -2.5
Expanded Uncertainty, U (%)	+2.0 / -3.3
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	30891F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability							
Measurement Type	Instrument	Calibration Date	Calibration Due Date				
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021				
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021				
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022				
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022				
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022				

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 30891F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

- - Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

[1]

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.3752	0.37	113.88	7.3582	0.35	246.89
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.3564	0.37	111.27	7.3372	0.35	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.3338	0.39	108.97	7.3335	0.34	251.39
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.3219	0.34	106.95	7.3112	0.34	253.46
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.3161	0.36	104.90	7.3006	0.39	255.42
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.2884	0.38	103.11	7.2828	0.36	257.35
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.2831	0.36	101.23	7.2693	0.39	259.11
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.2655	0.38	99.43	7.2525	0.38	260.79
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.2657	0.38	97.85	7.2687	0.39	262.44
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.2802	0.45	96.25	7.2726	0.41	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.3246	0.42	94.60	7.2885	0.43	265.65
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.3193	N/A	93.07	7.2671	N/A	267.18
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.2099	N/A	91.57	7.1856	N/A	268.72
26	7.4698	0.33	173.13	7.4770	0.31	186.80	72	7.1544	N/A	90.05	7.1745	N/A	270.22
28	7.4594	0.31	153.91	7.4632	0.31	205.99	74	7.1401	N/A	88.74	7.1662	N/A	271.62
30	7.4490	0.34	144.87	7.4474	0.32	214.94	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.4334	0.34	138.31	7.4493	0.31	221.59	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.4246	0.30	132.96	7.4519	0.33	226.97	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.4219	0.32	128.62	7.4172	0.32	231.33	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.4126	0.34	125.32	7.4142	0.33	235.08	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.4070	0.35	121.71	7.4143	0.33	238.54	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.3970	0.35	118.55	7.4056	0.35	241.52	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.3787	0.36	116.20	7.3840	0.34	244.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.29
Combined Standard Uncertainty, $u(c)$ (%)	±0.54
Effective degrees of freedom, DF(c)	9806
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.1
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.3728	0.57550

† Rnet determination date: 06/08/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.77
Offset Uncertainty, U(off) (%)	+1.1 / -1.6
Expanded Uncertainty, U (%)	+1.8 / -2.4
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	30900F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30696F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

30900F3 Eppley PSP

Calibration Results 30900F3 Eppley PSP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win σ * Tc^4
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Figure 2. Responsivity vs Local Standard Time

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

[1]

Table 2.	Instrument Res	ponsivity (R)	and Calibration	Type-B Standard	Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.1345	0.33	113.79	8.0823	0.35	246.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.1136	0.41	111.29	8.0516	0.34	249.26
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.0959	0.40	109.03	8.0446	0.38	251.44
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.1042	0.34	106.87	8.0207	0.35	253.51
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.0882	0.37	104.95	8.0114	0.36	255.47
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.0635	0.45	103.09	7.9889	0.37	257.28
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.0630	0.43	101.30	7.9646	0.40	259.15
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.0546	0.42	99.52	7.9473	0.41	260.83
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.0309	0.39	97.89	7.9511	0.40	262.48
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.0304	0.45	96.19	7.9455	0.42	264.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.0522	0.42	94.64	7.9446	0.44	265.69
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.0693	N/A	93.10	7.9252	N/A	267.22
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.0301	N/A	91.51	7.7786	N/A	268.76
26	8.2040	0.34	173.51	8.2060	0.32	186.43	72	7.9716	N/A	90.04	7.7030	N/A	270.25
28	8.2050	0.32	154.05	8.1954	0.34	205.96	74	7.9626	N/A	88.72	7.7113	N/A	271.65
30	8.2026	0.30	144.99	8.1815	0.33	215.00	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.1914	0.33	138.28	8.1653	0.32	221.68	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.1878	0.34	133.04	8.1715	0.34	226.84	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.1840	0.32	128.51	8.1308	0.33	231.31	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.1618	0.35	125.51	8.1303	0.33	235.14	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.1654	0.31	121.67	8.1321	0.35	238.52	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.1584	0.33	118.64	8.1121	0.32	241.62	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.1423	0.35	116.24	8.0944	0.37	244.32	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

0.46-0.44 0.42-0 40-€) @0.38-% 0.36 0.34 0.32-0.30-5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) u(B) Max = 0.45 DF Max = +Inf • AM × PM

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.22
Combined Standard Uncertainty, $u(c)$ (%)	±0.50
Effective degrees of freedom, DF(c)	22319
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.98
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.1037	0.63379

† Rnet determination date: 05/08/2007

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.88
Offset Uncertainty, U(off) (%)	+1.2 / -1.9
Expanded Uncertainty, U (%)	+2.1 / -2.8
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	30951F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30696F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

30951F3 Eppley PSP

Calibration Results 30951F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),

= Win - Wout = Win - $\sigma * Tc^4$

where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

- Z = zenith angle (degrees),
- D = reference diffuse irradiance (W/m²).

[1]

Table 2	Instrument Resp	onsivity (R) and	I Calibration Type-F	Standard Uncertainty u(B)
10010 2.	moth annother toop	onority (it) and		

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.3738	0.33	113.79	8.3915	0.35	246.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.3412	0.41	111.29	8.3649	0.34	249.26
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.3202	0.40	109.03	8.3641	0.38	251.44
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.3242	0.34	106.87	8.3434	0.35	253.51
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.2970	0.37	104.95	8.3372	0.36	255.47
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.2669	0.45	103.09	8.3160	0.36	257.28
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.2539	0.43	101.30	8.3028	0.40	259.15
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.2403	0.42	99.52	8.2808	0.41	260.83
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.2230	0.39	97.89	8.2806	0.40	262.48
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.2124	0.45	96.19	8.2568	0.42	264.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.2250	0.42	94.64	8.2611	0.44	265.69
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.2229	N/A	93.10	8.2754	N/A	267.22
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.1968	N/A	91.51	8.2372	N/A	268.76
26	8.4731	0.34	173.51	8.4784	0.32	186.40	72	8.0901	N/A	90.04	8.1387	N/A	270.25
28	8.4652	0.32	154.05	8.4666	0.34	205.96	74	8.0515	N/A	88.72	8.0740	N/A	271.65
30	8.4576	0.30	144.99	8.4574	0.33	215.00	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.4431	0.33	138.28	8.4445	0.32	221.68	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.4403	0.34	133.04	8.4574	0.34	226.84	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.4332	0.32	128.51	8.4189	0.33	231.31	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.4055	0.35	125.51	8.4276	0.33	235.14	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.4056	0.31	121.67	8.4311	0.35	238.52	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.3995	0.33	118.64	8.4134	0.32	241.62	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.3824	0.35	116.24	8.3975	0.37	244.32	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.23
Combined Standard Uncertainty, $u(c)$ (%)	±0.50
Effective degrees of freedom, DF(c)	20627
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.99
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.3762	0.64270

† Rnet determination date: 07/06/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.88
Offset Uncertainty, U(off) (%)	+0.97 / -1.6
Expanded Uncertainty, U (%)	+1.9 / -2.5
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	30953F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30696F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

30953F3 Eppley PSP

Calibration Results 30953F3 Eppley PSP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(E	Table 2.	Instrument Responsivity	(R) and Calibration	Type-B Standard	Uncertainty, u(B)
---	----------	-------------------------	---------------------	-----------------	-------------------

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.2209	0.33	113.79	8.3244	0.35	246.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.1894	0.41	111.29	8.2925	0.34	249.26
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.1600	0.40	109.03	8.2844	0.38	251.44
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.1532	0.34	106.87	8.2615	0.35	253.51
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.1168	0.37	104.95	8.2456	0.36	255.47
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.0782	0.45	103.09	8.2189	0.37	257.28
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.0587	0.41	101.35	8.1879	0.40	259.15
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.0395	0.42	99.52	8.1555	0.42	260.83
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.0037	0.39	97.89	8.1475	0.41	262.48
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.9940	0.45	96.19	8.1398	0.43	264.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.0013	0.43	94.64	8.1392	0.45	265.69
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.9586	N/A	93.10	8.0970	N/A	267.22
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.8325	N/A	91.51	8.0074	N/A	268.76
26	8.4231	0.34	173.51	8.4336	0.32	186.40	72	7.7701	N/A	90.04	7.9530	N/A	270.25
28	8.4058	0.32	154.05	8.4277	0.34	205.96	74	7.7092	N/A	88.72	7.9027	N/A	271.65
30	8.3873	0.30	144.99	8.4185	0.33	215.00	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.3648	0.33	138.28	8.4058	0.32	221.68	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.3451	0.34	133.04	8.4160	0.35	226.84	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.3310	0.32	128.51	8.3770	0.33	231.31	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.2912	0.35	125.51	8.3795	0.33	235.14	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.2848	0.32	121.67	8.3783	0.35	238.52	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.2713	0.33	118.64	8.3565	0.33	241.62	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.2412	0.35	116.24	8.3347	0.37	244.32	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- I = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.23
Combined Standard Uncertainty, $u(c)$ (%)	±0.51
Effective degrees of freedom, DF(c)	19077
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.00
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.2691	0.67080

† Rnet determination date: 05/08/2007

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.89
Offset Uncertainty, U(off) (%)	+1.8 / -2.8
Expanded Uncertainty, U (%)	+2.7 / -3.7
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31096F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability					
Measurement Type	Instrument	Calibration Date	Calibration Due Date		
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021		
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021		
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022		
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022		
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022		
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022		
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022		
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022		
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022		

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 31096F3 Eppley PSP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

- where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

[1]

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.2424	0.37	113.88	8.1947	0.35	246.89
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.2121	0.37	111.27	8.1721	0.36	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.1818	0.40	108.97	8.1699	0.34	251.39
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.1596	0.34	106.95	8.1428	0.35	253.46
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.1467	0.37	104.90	8.1274	0.40	255.42
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.1119	0.38	103.11	8.1051	0.36	257.35
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.0992	0.36	101.23	8.0853	0.40	259.11
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.0692	0.39	99.43	8.0588	0.39	260.79
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.0455	0.39	97.85	8.0469	0.40	262.44
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.0455	0.46	96.25	8.0238	0.42	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.0721	0.42	94.60	8.0240	0.44	265.65
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.0487	N/A	93.07	8.0434	N/A	267.18
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.0222	N/A	91.57	8.0162	N/A	268.72
26	8.3491	0.34	173.13	8.3499	0.31	186.81	72	7.8666	N/A	90.05	7.9085	N/A	270.22
28	8.3440	0.32	153.91	8.3276	0.31	205.99	74	7.8397	N/A	88.74	7.8846	N/A	271.62
30	8.3341	0.34	144.87	8.3068	0.33	214.94	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.3158	0.34	138.31	8.3126	0.31	221.59	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.3075	0.31	132.96	8.3132	0.34	226.97	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.3044	0.32	128.62	8.2719	0.32	231.33	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.2905	0.34	125.32	8.2638	0.33	235.08	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.2847	0.35	121.71	8.2615	0.34	238.54	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.2726	0.35	118.55	8.2489	0.36	241.52	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.2470	0.36	116.20	8.2255	0.34	244.34	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

0.46-0.44 0.42-×c 0 40-€) @0.38-% 0.36 0.34 0.32 0.30-5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) u(B) Max = 0.46 DF Max = +Inf • AM × PM

Figure 4. Residuals from Spline Interpolation 0.7-+U(int) 0.6-0.4 0.2 (%) Residuals -0.0--0.2 -0.4 -0.6--0.7 ά 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) • AM × PM

Type-B Standard Uncertainty, u(B) (%)	±0.46
Type-A Interpolating Function, u(int) (%)	±0.31
Combined Standard Uncertainty, $u(c)$ (%)	±0.55
Effective degrees of freedom, DF(c)	8526
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.1
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.2257	0.71483

† Rnet determination date: 05/08/2007

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.78
Offset Uncertainty, U(off) (%)	+1.3 / -2.0
Expanded Uncertainty, U (%)	+2.1 / -2.8
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31099F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	Calibration System	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

	Table 1. Traceability						
Measurement Type	Instrument	Calibration Date	Calibration Due Date				
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021				
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021				
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022				
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022				
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022				

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 31099F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of radiometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

where, G = B * COS(Z) + D,

[1]

Figure 2. Responsivity vs Local Standard Time

Table 2.	Instrument Responsivity	(R) and	Calibration Type-	B Standard Uncertainty	. u(B)
TUDIC L.	mou unione recoponativity	(ity unit	ounoration type-	D oluniaara oncortainty	, (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.3210	0.39	113.83	7.3529	0.36	246.91
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.3023	0.33	111.26	7.3326	0.37	249.22
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.2651	0.41	109.06	7.3307	0.33	251.40
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.2493	0.36	106.96	7.3068	0.38	253.47
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.2339	0.36	104.91	7.2930	0.37	255.43
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.2060	0.45	103.06	7.2673	0.38	257.31
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.1971	0.38	101.22	7.2459	0.37	259.12
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.1828	0.38	99.44	7.2238	0.38	260.81
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.1540	0.41	97.86	7.2099	0.39	262.45
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.1534	0.44	96.16	7.2041	0.41	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.1824	0.42	94.61	7.2026	0.43	265.66
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.1926	N/A	93.08	7.2166	N/A	267.19
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.1697	N/A	91.57	7.1651	N/A	268.73
26	7.4417	0.33	173.64	7.4505	0.33	186.51	72	7.0315	N/A	90.06	7.0796	N/A	270.23
28	7.4364	0.32	153.68	7.4435	0.32	206.03	74	6.9407	N/A	88.70	7.0351	N/A	271.63
30	7.4253	0.34	144.83	7.4288	0.33	215.06	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.4119	0.33	138.29	7.4229	0.32	221.62	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.4064	0.34	132.98	7.4185	0.32	226.86	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.3967	0.32	128.70	7.3927	0.35	231.38	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.3867	0.36	125.37	7.3872	0.33	235.09	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.3759	0.35	121.72	7.3904	0.35	238.56	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.3623	0.35	118.60	7.3839	0.35	241.54	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.3379	0.34	116.27	7.3772	0.34	244.35	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 3. Type-B Standard Uncertainty vs Zenith Angle

0.45-0.44 0.42-0.40-(%) (B) (B) 0.36 0.34 0.32-0.31-0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) u(B) Max = 0.45 DF Max = +Inf • AM × PM

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.29
Combined Standard Uncertainty, $u(c)$ (%)	±0.53
Effective degrees of freedom, DF(c)	9434
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.3457	0.57866

† Rnet determination date: 05/08/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.87
Offset Uncertainty, U(off) (%)	+1.1 / -2.2
Expanded Uncertainty, U (%)	+2.0 / -3.1
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31100F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	Calibration System	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability							
Measurement Type	Instrument	Calibration Date	Calibration Due Date				
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021				
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021				
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022				
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022				
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022				

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 31100F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity ($\mu V/W/m^2$), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of radiometer (K).

Figure 2. Responsivity vs Local Standard Time

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2	Instrument Resi	onsivity (R) and	1 Calibration Type-B	Standard Uncertainty u(B)
10010 2.	into thanno int i too		a ounoration rypo b	

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.6659	0.39	113.83	7.6813	0.37	246.91
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.6496	0.33	111.26	7.6671	0.37	249.22
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.6244	0.41	109.06	7.6736	0.34	251.40
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.6126	0.36	106.96	7.6587	0.38	253.47
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.6026	0.36	104.91	7.6544	0.37	255.43
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.5775	0.45	103.06	7.6345	0.39	257.31
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.5733	0.39	101.22	7.6127	0.37	259.12
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.5628	0.38	99.44	7.5905	0.38	260.81
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.5414	0.41	97.86	7.5839	0.40	262.45
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.5441	0.44	96.16	7.5775	0.42	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.5682	0.42	94.61	7.5733	0.44	265.66
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.5506	N/A	93.08	7.5243	N/A	267.19
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.4363	N/A	91.57	7.5003	N/A	268.73
26	7.7662	0.33	173.64	7.7757	0.33	186.51	72	7.3636	N/A	90.06	7.4744	N/A	270.23
28	7.7627	0.32	153.68	7.7693	0.32	206.03	74	7.3476	N/A	88.70	7.4678	N/A	271.63
30	7.7516	0.34	144.83	7.7587	0.33	215.06	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.7396	0.33	138.29	7.7557	0.32	221.62	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.7375	0.34	132.98	7.7585	0.32	226.86	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.7292	0.32	128.70	7.7325	0.35	231.38	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.7216	0.36	125.37	7.7288	0.33	235.09	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.7122	0.35	121.72	7.7314	0.35	238.56	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.7009	0.35	118.60	7.7186	0.36	241.54	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.6771	0.34	116.27	7.7033	0.34	244.35	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

0.45-0.44 0.42-0.40-(%) (B) (B) 0.36 0.34 0.32-0.31-0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) u(B) Max = 0.45 DF Max = +Inf • AM × PM

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.28
Combined Standard Uncertainty, $u(c)$ (%)	±0.53
Effective degrees of freedom, DF(c)	10471
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.6807	0.64729

† Rnet determination date: 05/09/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.87
Offset Uncertainty, U(off) (%)	+1.0 / -1.5
Expanded Uncertainty, U (%)	+1.9 / -2.4
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31101F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	Calibration System	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability						
Measurement Type	Instrument	Calibration Date	Calibration Due Date			
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021			
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021			
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022			
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022			
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022			
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022			
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022			
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022			
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022			

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

31101F3 Eppley PSP

Calibration Results 31101F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- *Wnet* = effective net infrared measured by pyrgeometer (W/m^2),
 - = Win Wout = Win σ * Tc^4
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of radiometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.9887	0.39	113.83	7.9690	0.37	246.91
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.9594	0.33	111.26	7.9506	0.37	249.22
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.9275	0.40	109.12	7.9440	0.34	251.40
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.9102	0.36	106.96	7.9125	0.38	253.47
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.8891	0.36	104.91	7.8904	0.37	255.43
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.8566	0.45	103.06	7.8645	0.39	257.31
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.8369	0.39	101.22	7.8267	0.37	259.12
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.8150	0.38	99.44	7.7856	0.38	260.78
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.7765	0.41	97.86	7.7837	0.40	262.45
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.7684	0.44	96.16	7.7651	0.41	264.12
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.7877	0.42	94.61	7.7566	0.43	265.69
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.7575	N/A	93.08	7.6644	N/A	267.19
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.6587	N/A	91.57	7.6112	N/A	268.73
26	8.1324	0.33	173.61	8.1337	0.33	186.40	72	7.6089	N/A	90.06	7.5725	N/A	270.23
28	8.1134	0.32	153.68	8.1183	0.32	206.03	74	7.5840	N/A	88.70	7.5483	N/A	271.63
30	8.1015	0.34	144.83	8.0985	0.33	215.06	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.0781	0.33	138.29	8.0880	0.32	221.57	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.0703	0.34	132.98	8.0942	0.32	226.86	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.0635	0.32	128.70	8.0509	0.35	231.38	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.0575	0.36	125.37	8.0420	0.33	235.09	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.0434	0.35	121.72	8.0447	0.35	238.56	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.0339	0.35	118.60	8.0192	0.36	241.54	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.0141	0.34	116.27	7.9967	0.34	244.43	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- I = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

0.45-0.44 0.42-0.40-(%) (B) (B) 0.36 0.34 0.32-0.31-0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) u(B) Max = 0.45 DF Max = +Inf • AM × PM

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.34
Combined Standard Uncertainty, $u(c)$ (%)	±0.56
Effective degrees of freedom, DF(c)	6144
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.1
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.9922	0.64834

† Rnet determination date: 05/09/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.87
Offset Uncertainty, U(off) (%)	+1.4 / -2.6
Expanded Uncertainty, U (%)	+2.2 / -3.5
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	NIP	Serial Number:	31120E6
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	Calibration System	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 31120E6 Eppley NIP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),

= Win - Wout = Win - $\sigma * Tc^4$

where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Figure 2. Responsivity vs Local Standard Time

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2.	Instrument Responsivity	(R) and Calibration	Type-B Standard Uncertainty	. u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.5053	0.33	113.85	8.4544	0.32	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.4880	0.32	111.24	8.4465	0.29	249.18
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.4915	0.33	109.01	8.4590	0.29	251.43
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.4930	0.29	106.92	8.4441	0.32	253.50
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.4969	0.31	104.94	8.4615	0.29	255.40
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.5004	0.33	103.03	8.4486	0.29	257.33
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.4975	0.30	101.40	8.4575	0.30	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.5116	0.34	99.56	8.4493	0.31	260.77
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.5093	0.32	97.82	8.4644	0.30	262.52
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.5267	0.36	96.23	8.4738	0.30	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.5185	0.30	94.58	8.4726	0.30	265.63
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.5233	N/A	93.04	8.4740	N/A	267.21
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.5244	N/A	91.55	8.4749	N/A	268.70
26	8.4377	0.30	173.43	8.4436	0.31	187.00	72	8.5368	N/A	90.03	8.4875	N/A	270.20
28	8.4472	0.31	153.85	8.4384	0.30	206.02	74	8.5632	N/A	88.71	8.4874	N/A	271.65
30	8.4461	0.30	144.62	8.4433	0.31	214.98	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.4437	0.30	138.25	8.4450	0.29	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.4552	0.30	132.92	8.4593	0.30	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.4594	0.29	128.49	8.4403	0.29	231.29	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.4809	0.32	125.32	8.4547	0.29	235.27	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.4790	0.30	121.60	8.4636	0.31	238.60	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.4812	0.31	118.63	8.4541	0.32	241.57	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.4851	0.32	116.23	8.4506	0.29	244.38	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

0.36 0.35 0.34-0.33-% 0.31-0.30-0.29 0.28-5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) u(B) Max = 0.36 DF Max = +Inf • AM × PM

Figure 4. Residuals from Spline Interpolation

Type-B Standard Uncertainty, u(B) (%)	±0.36
Type-A Interpolating Function, u(int) (%)	±0.20
Combined Standard Uncertainty, $u(c)$ (%)	±0.41
Effective degrees of freedom, DF(c)	15072
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.80
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.4699	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.67
Offset Uncertainty, U(off) (%)	+0.49 / -0.35
Expanded Uncertainty, U (%)	+1.2 / -1.0
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	NIP	Serial Number:	31122E6
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	Calibration System	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 31122E6 Eppley NIP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Tahlo 2	Instrument Res	nonsivity (R)	and Calibration	Type-B Standa	rd Uncertainty u	INR)
	moti uniciti tito o			Type-D oluniau	i a oncontainty, t	410/

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.8795	0.29	113.93	8.8511	0.30	246.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.8785	0.31	111.25	8.8445	0.30	249.19
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.8763	0.29	109.16	8.8526	0.31	251.38
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.8754	0.29	106.93	8.8460	0.31	253.45
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.8804	0.31	104.89	8.8572	0.31	255.41
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.8837	0.31	103.04	8.8484	0.31	257.34
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.8822	0.30	101.23	8.8519	0.30	259.09
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.8954	0.34	99.47	8.8514	0.30	260.78
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.8896	0.30	97.83	8.8592	0.30	262.52
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.9070	0.30	96.24	8.8676	0.30	264.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.9112	0.30	94.59	8.8633	0.33	265.64
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.9048	N/A	93.08	8.8651	N/A	267.21
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.9202	N/A	91.55	8.8691	N/A	268.70
26	8.8400	0.30	173.47	8.8433	0.30	186.51	72	8.9301	N/A	90.04	8.8881	N/A	270.21
28	8.8483	0.30	153.88	8.8311	0.30	205.96	74	8.9518	N/A	88.71	8.8852	N/A	271.65
30	8.8472	0.31	144.87	8.8256	0.30	215.00	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.8455	0.30	138.19	8.8398	0.31	221.56	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.8543	0.30	132.97	8.8510	0.31	226.94	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.8546	0.29	128.57	8.8308	0.31	231.31	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.8737	0.32	125.21	8.8377	0.31	235.23	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.8797	0.31	121.68	8.8540	0.29	238.52	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.8768	0.31	118.64	8.8499	0.31	241.58	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.8727	0.31	116.17	8.8482	0.29	244.36	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Type-B Standard Uncertainty, u(B) (%)	±0.34
Type-A Interpolating Function, u(int) (%)	±0.19
Combined Standard Uncertainty, $u(c)$ (%)	±0.39
Effective degrees of freedom, DF(c)	15385
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.77
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4.	Calibration	Label	Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.8620	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

±0.67
+0.38 / -0.41
+1.0 / -1.1
+Inf
1.96
30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31149F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	Calibration System	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability					
Measurement Type	Instrument	Calibration Date	Calibration Due Date		
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021		
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021		
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022		
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022		
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022		
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022		
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022		
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022		
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022		

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

31149F3 Eppley PSP
Calibration Results 31149F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- v = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of radiometer (K).

- - Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

[1]

Table 2	Instrument Responsivity	(\mathbf{R}) and	Calibration	Type-B Stand	ard Uncertainty u(B)
	moti uniciti recoponorvity	(11) 411		Type-D olunia	and oncontainty, alb

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.9499	0.39	113.83	7.9458	0.36	246.91
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.9317	0.33	111.26	7.9252	0.36	249.22
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.9016	0.41	109.06	7.9253	0.33	251.40
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.8948	0.35	106.96	7.9052	0.38	253.47
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.8832	0.36	104.91	7.9007	0.36	255.43
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.8564	0.44	103.06	7.8752	0.38	257.31
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.8559	0.38	101.22	7.8626	0.36	259.12
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.8498	0.38	99.44	7.8514	0.37	260.81
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.8246	0.41	97.86	7.8419	0.39	262.45
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.8226	0.44	96.16	7.8535	0.40	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.8763	0.41	94.61	7.8813	0.42	265.66
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.9122	N/A	93.08	7.9272	N/A	267.19
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.9027	N/A	91.57	7.8107	N/A	268.73
26	8.0348	0.33	173.64	8.0333	0.33	186.54	72	7.7647	N/A	90.06	7.7978	N/A	270.23
28	8.0314	0.32	153.68	8.0155	0.32	206.03	74	7.6469	N/A	88.70	7.7965	N/A	271.63
30	8.0154	0.33	144.83	8.0081	0.33	215.06	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.9990	0.33	138.29	8.0016	0.31	221.62	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.9947	0.34	132.98	8.0070	0.32	226.86	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.9857	0.32	128.70	7.9843	0.35	231.38	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.9895	0.36	125.37	7.9838	0.32	235.09	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.9788	0.34	121.72	7.9909	0.35	238.56	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.9703	0.35	118.60	7.9786	0.35	241.54	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.9564	0.34	116.27	7.9654	0.34	244.35	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 3. Type-B Standard Uncertainty vs Zenith Angle

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.44
Type-A Interpolating Function, u(int) (%)	±0.27
Combined Standard Uncertainty, $u(c)$ (%)	±0.52
Effective degrees of freedom, DF(c)	11102
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.9499	0.54900

† Rnet determination date: 03/30/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.87
Offset Uncertainty, U(off) (%)	+0.82 / -1.3
Expanded Uncertainty, U (%)	+1.7 / -2.1
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31150F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	Calibration System	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

	Table 1. Traceability		
Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 31150F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of radiometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.6602	0.39	113.83	7.6310	0.36	246.91
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.6394	0.33	111.26	7.6054	0.37	249.22
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.6126	0.41	109.06	7.5983	0.33	251.40
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.6042	0.36	106.96	7.5715	0.38	253.47
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.5919	0.36	104.91	7.5561	0.37	255.43
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.5640	0.44	103.06	7.5206	0.38	257.31
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.5601	0.38	101.22	7.4956	0.36	259.12
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.5488	0.38	99.44	7.4748	0.38	260.81
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.5218	0.41	97.86	7.4512	0.39	262.45
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.5128	0.44	96.16	7.4346	0.41	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.5398	0.42	94.61	7.4245	0.42	265.66
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.5432	N/A	93.08	7.4094	N/A	267.19
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.5069	N/A	91.57	7.3744	N/A	268.73
26	7.7538	0.33	173.64	7.7429	0.33	186.54	72	7.2595	N/A	90.01	7.2744	N/A	270.23
28	7.7637	0.32	153.68	7.7129	0.32	206.03	74	7.0196	N/A	88.70	7.2625	N/A	271.63
30	7.7438	0.33	144.83	7.6989	0.33	215.06	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.7275	0.33	138.29	7.6875	0.31	221.62	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.7217	0.34	132.98	7.6928	0.32	226.86	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.7123	0.32	128.70	7.6707	0.35	231.38	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.7102	0.36	125.37	7.6738	0.33	235.09	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.7024	0.35	121.72	7.6792	0.35	238.56	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.6904	0.35	118.60	7.6690	0.35	241.54	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.6781	0.34	116.27	7.6514	0.34	244.35	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

20:00

- I = reference irradiance (W/m²), beam (B) or global (G) where, G = B * COS(Z) + D,
 - Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 3. Type-B Standard Uncertainty vs Zenith Angle

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.44
Type-A Interpolating Function, u(int) (%)	±0.27
Combined Standard Uncertainty, $u(c)$ (%)	±0.52
Effective degrees of freedom, DF(c)	11428
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.6519	0.55100

† Rnet determination date: 03/30/2006

Table 5. Uncertainty using R @ 45°

±0.87
+1.2 / -2.3
+2.1 / -3.2
+Inf
1.96
30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31151F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	Calibration System	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability								
Measurement Type	Instrument	Calibration Date	Calibration Due Date					
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021					
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021					
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022					
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022					
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022					
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022					
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022					
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022					
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022					

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

31151F3 Eppley PSP

Calibration Results 31151F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of radiometer (K).

Table 2	Instrument Respon	nsivity (R) and	Calibration Type-B	Standard Uncertainty u(B)
10010 21	moth annoint i toopoi	101111, (11) and	ounoration type b	otaniaana onoontanity, a(b)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.6349	0.39	113.83	7.6567	0.36	246.91
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.6079	0.33	111.26	7.6391	0.36	249.22
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.5860	0.41	109.06	7.6345	0.33	251.40
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.5803	0.35	106.96	7.6165	0.38	253.47
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.5657	0.36	104.91	7.6137	0.36	255.43
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.5376	0.44	103.06	7.5902	0.38	257.31
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.5316	0.38	101.22	7.5754	0.36	259.12
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.5237	0.38	99.44	7.5571	0.37	260.81
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.4986	0.41	97.86	7.5408	0.39	262.45
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.4804	0.44	96.16	7.5222	0.40	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.4808	0.41	94.61	7.5109	0.42	265.66
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.4817	N/A	93.08	7.5376	N/A	267.19
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.5168	N/A	91.57	7.5947	N/A	268.73
26	7.7318	0.33	173.64	7.7423	0.33	186.54	72	7.4190	N/A	90.06	7.5310	N/A	270.23
28	7.7159	0.32	153.68	7.7380	0.32	206.03	74	7.3640	N/A	88.70	7.5084	N/A	271.63
30	7.7022	0.33	144.83	7.7338	0.33	215.06	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.6907	0.33	138.29	7.7241	0.31	221.62	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.6878	0.34	132.98	7.7333	0.32	226.86	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.6846	0.32	128.70	7.6992	0.35	231.38	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.6796	0.36	125.37	7.7029	0.32	235.09	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.6733	0.34	121.72	7.7078	0.35	238.56	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.6630	0.35	118.60	7.6915	0.35	241.54	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.6454	0.34	116.27	7.6719	0.34	244.35	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

I = reference irradiance (W/m²), beam (B) or global (G)

- where, G = B * COS(Z) + D,
 - Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 3. Type-B Standard Uncertainty vs Zenith Angle

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.44
Type-A Interpolating Function, u(int) (%)	±0.26
Combined Standard Uncertainty, $u(c)$ (%)	±0.51
Effective degrees of freedom, DF(c)	13578
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.6488	0.53300

† Rnet determination date: 03/30/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.87
Offset Uncertainty, U(off) (%)	+1.1 / -1.6
Expanded Uncertainty, U (%)	+2.0 / -2.5
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31152F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	Calibration System	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. T	raceability
------------	-------------

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30696F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 31152F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of radiometer (K).

- where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

[1]

Table 2	Instrument Resp	onsivity (R) and	I Calibration Type-F	Standard Uncertainty u(B)
10010 2.	moth annother toop	onority (it) and		

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.9916	0.33	113.79	8.0306	0.35	246.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.9669	0.41	111.29	8.0019	0.34	249.26
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.9370	0.40	109.03	7.9974	0.38	251.44
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.9315	0.34	106.87	7.9739	0.35	253.51
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.9023	0.37	104.95	7.9599	0.36	255.47
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.8678	0.45	103.09	7.9356	0.36	257.28
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.8509	0.40	101.35	7.9197	0.40	259.15
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.8344	0.42	99.52	7.8909	0.41	260.83
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.7937	0.39	97.89	7.8805	0.40	262.48
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.7800	0.45	96.19	7.8603	0.42	264.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.7807	0.42	94.64	7.8482	0.44	265.69
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.7688	N/A	93.10	7.8525	N/A	267.22
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.7043	N/A	91.51	7.7864	N/A	268.76
26	8.1508	0.34	173.51	8.1562	0.32	186.40	72	7.6462	N/A	90.04	7.7237	N/A	270.25
28	8.1368	0.32	154.05	8.1380	0.34	205.96	74	7.6343	N/A	88.72	7.6839	N/A	271.65
30	8.1240	0.30	144.99	8.1241	0.33	215.00	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.1081	0.33	138.28	8.1206	0.32	221.68	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.0907	0.34	133.04	8.1295	0.34	226.84	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.0801	0.32	128.51	8.0891	0.33	231.31	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.0522	0.35	125.51	8.0894	0.33	235.14	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.0463	0.31	121.67	8.0888	0.35	238.52	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.0348	0.33	118.64	8.0666	0.32	241.62	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.0074	0.35	116.24	8.0441	0.36	244.32	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

0.46-0.44 0.42-0 40-€) @0.38-% 0.36 0.34 0.32-0.30-5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) u(B) Max = 0.45 DF Max = +Inf • AM × PM

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.24
Combined Standard Uncertainty, $u(c)$ (%)	±0.51
Effective degrees of freedom, DF(c)	17804
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.00
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.0063	0.63390

† Rnet determination date: 05/09/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.88
Offset Uncertainty, U(off) (%)	+1.5 / -2.1
Expanded Uncertainty, U (%)	+2.4 / -3.0
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31153F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	Calibration System	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30696F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

31153F3 Eppley PSP

Calibration Results 31153F3 Eppley PSP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, *Win* = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of radiometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.5061	0.33	113.79	7.6789	0.35	246.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.4648	0.41	111.29	7.6452	0.34	249.26
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.4314	0.40	109.03	7.6374	0.38	251.44
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.4194	0.34	106.87	7.6110	0.35	253.51
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.3812	0.37	104.95	7.5979	0.36	255.47
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.3392	0.45	103.09	7.5684	0.37	257.28
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.3101	0.41	101.35	7.5461	0.40	259.15
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.2862	0.43	99.52	7.5188	0.42	260.83
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.2391	0.39	97.89	7.5075	0.41	262.48
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.2195	0.45	96.19	7.4811	0.43	264.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.2064	0.43	94.64	7.4799	0.45	265.69
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.1926	N/A	93.10	7.4891	N/A	267.22
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.2005	N/A	91.51	7.4973	N/A	268.76
26	7.7776	0.34	173.51	7.7930	0.32	186.40	72	7.0767	N/A	90.04	7.4006	N/A	270.25
28	7.7479	0.32	154.05	7.7873	0.34	205.96	74	7.0451	N/A	88.72	7.3747	N/A	271.65
30	7.7233	0.31	144.99	7.7777	0.33	215.00	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.6960	0.33	138.28	7.7639	0.32	221.68	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.6750	0.34	133.04	7.7737	0.35	226.84	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.6546	0.32	128.51	7.7345	0.33	231.31	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.6025	0.36	125.51	7.7355	0.33	235.14	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.5929	0.32	121.67	7.7368	0.35	238.52	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.5685	0.33	118.64	7.7141	0.33	241.62	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.5268	0.35	116.24	7.6915	0.37	244.32	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.25
Combined Standard Uncertainty, $u(c)$ (%)	±0.52
Effective degrees of freedom, DF(c)	15089
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.5905	0.64286

† Rnet determination date: 05/09/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.89
Offset Uncertainty, U(off) (%)	+2.5 / -4.0
Expanded Uncertainty, U (%)	+3.4 / -4.9
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31154F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	Calibration System	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30696F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 31154F3 Eppley PSP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity ($\mu V/W/m^2$), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of radiometer (K).

,

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.6021	0.33	113.79	7.6279	0.34	246.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.5727	0.41	111.29	7.5966	0.33	249.26
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.5528	0.40	109.03	7.5903	0.38	251.44
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.5542	0.34	106.87	7.5664	0.34	253.51
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.5258	0.37	104.95	7.5543	0.35	255.47
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.4961	0.45	103.09	7.5271	0.36	257.28
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.4802	0.40	101.35	7.5079	0.39	259.15
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.4689	0.42	99.52	7.4839	0.41	260.83
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.4438	0.39	97.89	7.4732	0.40	262.48
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.4435	0.44	96.19	7.4624	0.41	264.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.4521	0.42	94.64	7.4577	0.43	265.69
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.4481	N/A	93.10	7.4726	N/A	267.22
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.3529	N/A	91.51	7.3945	N/A	268.76
26	7.7483	0.33	173.51	7.7518	0.32	186.40	72	7.3223	N/A	90.04	7.3526	N/A	270.25
28	7.7399	0.32	154.05	7.7390	0.33	205.96	74	7.3129	N/A	88.72	7.3266	N/A	271.65
30	7.7264	0.30	144.99	7.7279	0.32	215.00	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.7100	0.33	138.28	7.7132	0.32	221.68	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.6984	0.34	133.04	7.7203	0.34	226.84	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.6883	0.32	128.51	7.6799	0.32	231.31	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.6624	0.35	125.51	7.6806	0.33	235.14	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.6550	0.31	121.67	7.6812	0.35	238.52	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.6418	0.32	118.64	7.6597	0.32	241.62	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.6128	0.34	116.24	7.6390	0.36	244.32	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.24
Combined Standard Uncertainty, u(c) (%)	±0.51
Effective degrees of freedom, DF(c)	16717
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.00
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.6103	0.56158

† Rnet determination date: 05/09/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.88
Offset Uncertainty, U(off) (%)	+1.5 / -1.9
Expanded Uncertainty, U (%)	+2.4 / -2.7
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31158F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	Calibration System	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30696F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 31158F3 Eppley PSP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of radiometer (K).

Table 2.	Instrument Responsivity	(R) and Calibration	Type-B Standard	Uncertainty, u(B)
		(, ,,

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.8927	0.33	113.79	7.9019	0.34	246.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.8748	0.41	111.29	7.8752	0.33	249.26
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.8517	0.39	109.03	7.8701	0.37	251.44
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.8526	0.34	106.87	7.8496	0.34	253.51
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.8302	0.36	104.95	7.8380	0.35	255.47
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.8044	0.45	103.09	7.8127	0.35	257.28
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.7970	0.40	101.35	7.7979	0.39	259.15
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.7923	0.42	99.52	7.7747	0.40	260.83
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.7634	0.38	97.89	7.7715	0.39	262.48
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.7520	0.44	96.19	7.7556	0.41	264.09
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.7739	0.42	94.64	7.7536	0.43	265.69
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.7693	N/A	93.10	7.7574	N/A	267.22
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.7882	N/A	91.51	7.7610	N/A	268.76
26	8.0040	0.33	173.51	8.0111	0.32	186.40	72	7.6920	N/A	90.04	7.6459	N/A	270.25
28	7.9961	0.31	154.05	8.0003	0.33	205.96	74	7.6695	N/A	88.72	7.6230	N/A	271.65
30	7.9867	0.30	144.99	7.9876	0.32	215.00	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.9762	0.32	138.28	7.9733	0.32	221.68	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.9646	0.34	133.04	7.9817	0.34	226.84	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.9586	0.32	128.51	7.9428	0.32	231.31	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.9342	0.35	125.51	7.9470	0.33	235.14	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.9320	0.31	121.67	7.9483	0.35	238.52	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.9262	0.32	118.64	7.9296	0.32	241.62	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.9029	0.34	116.24	7.9119	0.36	244.32	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

31158F3 Eppley PSP

I = reference irradiance (W/m²), beam (B) or global (G)

where, G = B * COS(Z) + D,

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

[1]

20:00

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.23
Combined Standard Uncertainty, $u(c)$ (%)	±0.50
Effective degrees of freedom, DF(c)	18596
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.98
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.8915	0.52400

+ Rnet determination date: 03/30/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.87
Offset Uncertainty, U(off) (%)	+1.2 / -1.5
Expanded Uncertainty, U (%)	+2.1 / -2.4
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31159F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	Calibration System	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30696F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

31159F3 Eppley PSP

Calibration Results 31159F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity ($\mu V/W/m^2$), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of radiometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Zenith		AM			ΡM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.5579	0.37	113.81	7.6461	0.34	246.89
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.5204	0.35	111.20	7.6157	0.37	249.27
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.4915	0.39	109.04	7.6090	0.35	251.45
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.4894	0.34	106.88	7.5915	0.34	253.52
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.4577	0.36	104.96	7.5860	0.39	255.47
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.4349	0.39	103.05	7.5582	0.35	257.29
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.4131	0.44	101.36	7.5385	0.36	259.05
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.4019	0.42	99.53	7.5229	0.38	260.85
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.3652	0.41	97.79	7.5187	0.39	262.48
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.3475	0.48	96.20	7.4959	0.44	264.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.3579	0.45	94.65	7.4938	0.43	265.70
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.3636	N/A	93.06	7.5087	N/A	267.23
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.3859	N/A	91.52	7.5437	N/A	268.72
26	7.7440	0.33	173.32	7.7534	0.33	186.25	72	7.2982	N/A	90.05	7.5048	N/A	270.21
28	7.7168	0.34	154.08	7.7461	0.33	205.99	74	7.2546	N/A	88.73	7.4482	N/A	271.62
30	7.6957	0.33	144.94	7.7374	0.33	215.03	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.6745	0.31	138.30	7.7296	0.32	221.58	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.6599	0.33	132.96	7.7391	0.35	226.89	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.6534	0.30	128.43	7.6982	0.34	231.33	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.6118	0.34	125.36	7.7007	0.33	235.16	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.6116	0.35	121.70	7.7018	0.35	238.54	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.5956	0.33	118.65	7.6832	0.32	241.59	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.5618	0.38	116.18	7.6604	0.34	244.33	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

0.48-0.46-0.44-0.42-@0.40-<u>0.38</u>-0.36-0.34-0.32-0.30-5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) u(B) Max = 0.48 DF Max = +Inf • AM × PM

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.48
Type-A Interpolating Function, u(int) (%)	±0.24
Combined Standard Uncertainty, $u(c)$ (%)	±0.53
Effective degrees of freedom, DF(c)	21598
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.5992	0.53200

† Rnet determination date: 03/30/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.86
Offset Uncertainty, U(off) (%)	+1.8 / -2.6
Expanded Uncertainty, U (%)	+2.7 / -3.5
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31160F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	Calibration System	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30696F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 31160F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity ($\mu V/W/m^2$), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of radiometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2	Instrument Resi	onsivity (R) and	1 Calibration Type-B	Standard Uncertainty u(B)
10010 2.	into thanno int i too		a ounoration rypo b	

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.0138	0.37	113.81	8.0857	0.34	246.89
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.9790	0.35	111.20	8.0599	0.36	249.27
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.9522	0.39	109.04	8.0515	0.35	251.45
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.9527	0.33	106.88	8.0332	0.33	253.52
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.9247	0.36	104.96	8.0319	0.39	255.47
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.9067	0.39	103.05	8.0096	0.35	257.29
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.8919	0.44	101.36	8.0026	0.36	259.05
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.8834	0.41	99.53	7.9945	0.37	260.85
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.8489	0.41	97.79	7.9885	0.38	262.48
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.8242	0.47	96.20	7.9675	0.43	264.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.8323	0.44	94.65	7.9636	0.42	265.70
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.8298	N/A	93.06	7.9771	N/A	267.23
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.8497	N/A	91.52	7.9994	N/A	268.72
26	8.1673	0.33	173.32	8.1749	0.33	186.25	72	7.7443	N/A	90.05	7.8953	N/A	270.21
28	8.1505	0.34	154.08	8.1640	0.32	205.99	74	7.7074	N/A	88.73	7.8860	N/A	271.62
30	8.1370	0.32	144.94	8.1555	0.33	215.03	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.1221	0.31	138.30	8.1508	0.32	221.58	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.1105	0.33	132.96	8.1603	0.34	226.89	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.1042	0.30	128.43	8.1226	0.33	231.33	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.0684	0.34	125.36	8.1274	0.32	235.16	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.0640	0.35	121.70	8.1305	0.34	238.54	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.0483	0.33	118.65	8.1134	0.32	241.59	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.0185	0.37	116.18	8.0939	0.34	244.33	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 3. Type-B Standard Uncertainty vs Zenith Angle

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.47
Type-A Interpolating Function, u(int) (%)	±0.22
Combined Standard Uncertainty, $u(c)$ (%)	±0.52
Effective degrees of freedom, DF(c)	27492
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.0459	0.49000

† Rnet determination date: 03/30/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.86
Offset Uncertainty, U(off) (%)	+1.4 / -2.0
Expanded Uncertainty, U (%)	+2.3 / -2.9
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31277F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1	Traceability
Table I.	Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

31277F3 Eppley PSP

Calibration Results 31277F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

D = reference diffuse irradiance (W/m²).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

where, G = B * COS(Z) + D,

Table 2	Instrument Resi	onsivity (R) and	1 Calibration Type-B	Standard Uncertainty u(B)
10010 2.	into thanno int i too		a ounoration rypo b	

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.3016	0.39	113.83	7.3014	0.36	246.91
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.2831	0.33	111.26	7.2810	0.37	249.22
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.2545	0.41	109.06	7.2752	0.33	251.40
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.2459	0.35	106.96	7.2537	0.38	253.47
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.2317	0.36	104.91	7.2429	0.37	255.43
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.2064	0.44	103.06	7.2151	0.38	257.31
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.2045	0.38	101.22	7.1943	0.36	259.12
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.1925	0.38	99.44	7.1758	0.37	260.81
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.1704	0.41	97.86	7.1594	0.39	262.45
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.1552	0.44	96.16	7.1530	0.40	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.1918	0.41	94.61	7.1471	0.42	265.66
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.1937	N/A	93.08	7.1497	N/A	267.19
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.0009	N/A	91.57	7.0231	N/A	268.73
26	7.4118	0.33	173.64	7.4151	0.33	186.54	72	6.5937	N/A	90.01	6.9620	N/A	270.23
28	7.3964	0.32	153.68	7.3976	0.32	206.03	74	6.2788	N/A	88.70	6.9570	N/A	271.63
30	7.3772	0.33	144.83	7.3904	0.33	215.06	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.3605	0.33	138.29	7.3834	0.31	221.62	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.3581	0.34	132.98	7.3888	0.32	226.86	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.3505	0.32	128.70	7.3676	0.35	231.38	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.3480	0.36	125.37	7.3643	0.32	235.09	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.3423	0.34	121.72	7.3621	0.35	238.56	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.3335	0.35	118.60	7.3430	0.35	241.54	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.3139	0.34	116.27	7.3227	0.34	244.35	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 3. Type-B Standard Uncertainty vs Zenith Angle

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.44
Type-A Interpolating Function, u(int) (%)	±0.26
Combined Standard Uncertainty, $u(c)$ (%)	±0.51
Effective degrees of freedom, DF(c)	13384
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

± An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.3071	0.50400

† Rnet determination date: 04/03/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.87
Offset Uncertainty, U(off) (%)	+1.1 / -1.8
Expanded Uncertainty, U (%)	+2.0 / -2.7
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31283F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

31283F3 Eppley PSP

Calibration Results 31283F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

[1]

Lable 2 Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty	11(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.1969	0.39	113.83	8.1216	0.36	246.91
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.1875	0.33	111.26	8.1018	0.37	249.22
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.1630	0.41	109.06	8.1022	0.33	251.40
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.1609	0.36	106.96	8.0774	0.38	253.47
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.1548	0.36	104.91	8.0617	0.37	255.43
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.1277	0.44	103.06	8.0379	0.38	257.31
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.1202	0.38	101.22	8.0141	0.36	259.12
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.1074	0.38	99.44	7.9927	0.38	260.81
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.1013	0.41	97.86	7.9846	0.39	262.45
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.1137	0.44	96.16	7.9855	0.41	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.1582	0.41	94.61	7.9907	0.43	265.66
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.1560	N/A	93.08	8.0136	N/A	267.19
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.0355	N/A	91.57	7.9203	N/A	268.73
26	8.2577	0.33	173.64	8.2588	0.33	186.54	72	7.9615	N/A	90.06	7.8461	N/A	270.23
28	8.2598	0.32	153.68	8.2450	0.32	206.03	74	7.8839	N/A	88.70	7.8236	N/A	271.63
30	8.2468	0.33	144.83	8.2283	0.33	215.06	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.2339	0.33	138.29	8.2278	0.32	221.62	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.2345	0.34	132.98	8.2249	0.32	226.86	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.2320	0.32	128.70	8.1966	0.35	231.38	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.2352	0.36	125.37	8.1872	0.33	235.09	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.2331	0.35	121.72	8.1862	0.35	238.56	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.2292	0.35	118.60	8.1704	0.35	241.54	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.2069	0.34	116.27	8.1527	0.34	244.35	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 3. Type-B Standard Uncertainty vs Zenith Angle

0.45-0.44 0.42-0.40-(%) (B) (B) 0.36 0.34 0.32-0.31-0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) u(B) Max = 0.44 DF Max = +Inf • AM × PM

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.44
Type-A Interpolating Function, u(int) (%)	±0.29
Combined Standard Uncertainty, $u(c)$ (%)	±0.53
Effective degrees of freedom, DF(c)	9390
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.1673	0.60171

† Rnet determination date: 04/26/2007

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.87
Offset Uncertainty, U(off) (%)	+0.97 / -2.1
Expanded Uncertainty, U (%)	+1.8 / -3.0
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31284F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30696F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

31284F3 Eppley PSP

Calibration Results 31284F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Figure 2. Responsivity vs Local Standard Time

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Tahla 2	Instrument Res	noneivity (P	and Calibration	Type-B Standard	Incortainty u(R)
	mati ument itea	polisivity (it		Type-D Otanuart	i Oncertainty, u(D)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.4354	0.37	113.81	7.3903	0.35	246.89
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.4170	0.33	111.20	7.3616	0.38	249.21
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.3999	0.40	109.04	7.3529	0.36	251.45
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.4166	0.34	106.88	7.3265	0.34	253.52
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.3804	0.37	104.96	7.3086	0.40	255.47
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.3762	0.39	103.05	7.2818	0.36	257.29
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.3754	0.44	101.36	7.2621	0.37	258.99
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.3729	0.42	99.53	7.2334	0.38	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.3437	0.41	97.79	7.2272	0.40	262.45
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.3374	0.48	96.20	7.2021	0.44	264.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.3528	0.46	94.69	7.1848	0.44	265.60
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.4032	N/A	93.01	7.2164	N/A	267.18
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.3532	N/A	91.57	7.1284	N/A	268.67
26	7.5301	0.33	173.32	7.5286	0.33	186.25	72	7.3064	N/A	90.00	7.0458	N/A	270.31
28	7.5300	0.34	154.08	7.5203	0.33	205.99	74	N/A	N/A	N/A	7.0134	N/A	271.71
30	7.5318	0.33	144.94	7.4962	0.33	215.03	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.5166	0.31	138.30	7.4894	0.33	221.58	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.5112	0.33	132.96	7.4899	0.35	226.89	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.5107	0.31	128.43	7.4449	0.34	231.33	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.4597	0.34	125.36	7.4472	0.33	235.16	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.4820	0.36	121.70	7.4516	0.35	238.54	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.4775	0.33	118.65	7.4318	0.32	241.59	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.4521	0.38	116.18	7.4095	0.34	244.33	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.48
Type-A Interpolating Function, u(int) (%)	±0.32
Combined Standard Uncertainty, $u(c)$ (%)	±0.58
Effective degrees of freedom, DF(c)	8613
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.1
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.4162	0.54600

† Rnet determination date: 03/31/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.87
Offset Uncertainty, U(off) (%)	+1.6 / -2.5
Expanded Uncertainty, U (%)	+2.4 / -3.3
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31289F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability					
Measurement Type	Instrument	Calibration Date	Calibration Due Date		
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021		
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021		
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022		
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022		
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022		
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022		
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022		
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022		
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022		

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

31289F3 Eppley PSP
Calibration Results 31289F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$

where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Figure 2. Responsivity vs Local Standard Time

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Tahla 2	Instrument Res	noneivity (P	and Calibration	Type-B Standard	Incortainty u(R)
	mati ument itea	polisivity (it		Type-D Otanuart	i Oncertainty, u(D)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.1171	0.39	113.83	8.1343	0.37	246.91
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.1016	0.33	111.26	8.1172	0.37	249.22
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.0709	0.41	109.06	8.1195	0.34	251.40
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.0621	0.36	106.96	8.1001	0.38	253.47
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.0449	0.36	104.91	8.0848	0.37	255.43
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.0159	0.45	103.06	8.0628	0.39	257.31
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.0085	0.39	101.22	8.0422	0.37	259.12
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.9930	0.38	99.44	8.0227	0.38	260.81
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.9590	0.41	97.86	8.0039	0.40	262.45
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.9342	0.44	96.16	7.9780	0.41	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.9537	0.42	94.61	7.9733	0.43	265.66
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.9699	N/A	93.08	8.0175	N/A	267.19
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.8815	N/A	91.57	7.9648	N/A	268.73
26	8.2278	0.33	173.64	8.2307	0.33	186.54	72	7.8013	N/A	90.06	7.9084	N/A	270.23
28	8.2163	0.32	153.68	8.2174	0.32	206.03	74	7.7514	N/A	88.70	7.8723	N/A	271.63
30	8.1983	0.34	144.83	8.2053	0.33	215.06	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.1806	0.33	138.29	8.2059	0.32	221.62	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.1750	0.34	132.98	8.2090	0.32	226.86	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.1663	0.32	128.70	8.1868	0.35	231.38	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.1646	0.36	125.37	8.1830	0.33	235.09	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.1552	0.35	121.72	8.1845	0.35	238.56	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.1436	0.35	118.60	8.1734	0.36	241.54	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.1291	0.34	116.27	8.1612	0.34	244.35	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

0.45-0.44 0.42-0.40-(%) (B) (B) 0.36 0.34 0.32-0.31-0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) u(B) Max = 0.45 DF Max = +Inf • AM × PM

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.45
Type-A Interpolating Function, u(int) (%)	±0.28
Combined Standard Uncertainty, u(c) (%)	±0.53
Effective degrees of freedom, DF(c)	10047
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.1326	0.65232

† Rnet determination date: 05/08/2007

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.87
Offset Uncertainty, U(off) (%)	+0.94 / -1.7
Expanded Uncertainty, U (%)	+1.8 / -2.6
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31291F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30696F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

31291F3 Eppley PSP

Calibration Results 31291F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.0396	0.38	113.81	8.1028	0.35	246.89
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.0182	0.35	111.20	8.0789	0.37	249.27
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.9849	0.40	109.04	8.0714	0.36	251.45
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.9824	0.34	106.88	8.0538	0.35	253.52
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.9446	0.37	104.96	8.0411	0.40	255.47
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.9178	0.40	103.05	8.0184	0.36	257.29
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.8908	0.44	101.36	8.0013	0.37	259.05
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.8787	0.42	99.53	7.9765	0.39	260.85
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.8265	0.42	97.79	7.9669	0.40	262.48
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.7990	0.48	96.17	7.9531	0.45	264.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.8367	0.45	94.65	7.9923	0.44	265.70
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.8273	N/A	93.06	7.9602	N/A	267.23
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.7368	N/A	91.52	7.9004	N/A	268.72
26	8.1903	0.33	173.32	8.1968	0.33	186.25	72	7.6834	N/A	90.05	7.8604	N/A	270.21
28	8.1820	0.34	154.08	8.1952	0.33	205.99	74	7.6550	N/A	88.73	7.8352	N/A	271.62
30	8.1699	0.33	144.94	8.1850	0.33	215.03	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.1550	0.32	138.30	8.1755	0.33	221.58	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.1316	0.33	132.96	8.1815	0.35	226.89	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.1230	0.31	128.43	8.1464	0.34	231.33	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.0900	0.34	125.36	8.1527	0.33	235.16	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.0874	0.36	121.70	8.1554	0.35	238.54	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.0757	0.33	118.65	8.1369	0.32	241.59	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.0509	0.38	116.18	8.1165	0.35	244.33	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- I = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

0.49-0.46-0 44-0.42-€0.40-(a) 10.38 0.36-0.34-0.32-0.30-0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) u(B) Max = 0.48 DF Max = +Inf • AM × PM

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.48
Type-A Interpolating Function, u(int) (%)	±0.23
Combined Standard Uncertainty, u(c) (%)	±0.53
Effective degrees of freedom, DF(c)	26005
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

± An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.0697	0.61842

† Rnet determination date: 04/26/2007

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.87
Offset Uncertainty, U(off) (%)	+1.4 / -2.4
Expanded Uncertainty, U (%)	+2.3 / -3.2
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31294F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	NSA	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1	Traceability
Table I.	Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

31294F3 Eppley PSP

Calibration Results 31294F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win σ * Tc^4
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.8100	0.39	113.83	8.7959	0.36	246.91
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.7956	0.32	111.26	8.7816	0.36	249.22
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.7691	0.41	109.06	8.7887	0.33	251.40
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.7613	0.35	106.96	8.7692	0.37	253.47
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.7500	0.36	104.91	8.7598	0.36	255.43
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.7258	0.44	103.06	8.7399	0.38	257.31
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.7332	0.38	101.22	8.7232	0.36	259.12
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.7250	0.38	99.44	8.7087	0.37	260.81
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.7094	0.41	97.86	8.7061	0.38	262.45
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.7133	0.43	96.16	8.7091	0.40	264.06
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.7433	0.41	94.61	8.7146	0.41	265.66
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.7460	N/A	93.08	8.7371	N/A	267.19
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.6614	N/A	91.57	8.6589	N/A	268.73
26	8.8801	0.33	173.64	8.8847	0.32	186.54	72	8.5184	N/A	90.06	8.5319	N/A	270.23
28	8.8775	0.32	153.68	8.8737	0.32	206.03	74	8.4656	N/A	88.70	8.5103	N/A	271.63
30	8.8647	0.33	144.83	8.8608	0.33	215.06	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.8519	0.33	138.29	8.8638	0.31	221.62	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.8491	0.33	132.98	8.8678	0.32	226.86	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.8418	0.32	128.70	8.8438	0.35	231.38	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.8392	0.35	125.37	8.8374	0.32	235.09	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.8342	0.34	121.72	8.8439	0.35	238.56	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.8315	0.35	118.60	8.8339	0.35	241.54	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.8133	0.34	116.27	8.8223	0.33	244.35	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 3. Type-B Standard Uncertainty vs Zenith Angle

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.44
Type-A Interpolating Function, u(int) (%)	±0.28
Combined Standard Uncertainty, $u(c)$ (%)	±0.52
Effective degrees of freedom, DF(c)	9795
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

Table 4.	Calibration	Label	Values
1 4010 41	ounoration	Easo.	- unuou

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.8074	0.54700

† Rnet determination date: 04/03/2006

Table 5. Uncertainty using R @ 45°

±0.86
+0.69 / -1.1
+1.6 / -2.0
+Inf
1.96
30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	31636F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability							
Measurement Type	Instrument	Calibration Date	Calibration Due Date				
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021				
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021				
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022				
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022				
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022				
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022				

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

31636F3 Eppley PSP

Calibration Results 31636F3 Eppley PSP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2	Instrument Responsivity	(\mathbf{R})	and Calibration	Type-R	Standard Uncertaint	v u(R)
	mon unione recoponativity	(IX)		I y pc-D	oluniaara oncortanni	y, u(D)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.4218	0.39	113.84	8.4933	0.36	246.92
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.4004	0.38	111.23	8.4804	0.33	249.24
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.3729	0.38	109.04	8.4885	0.35	251.42
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.3687	0.35	106.91	8.4739	0.36	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.3569	0.34	104.90	8.4662	0.37	255.44
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.3291	0.37	103.07	8.4532	0.35	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.3309	0.38	101.23	8.4376	0.36	259.13
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.3096	0.42	99.50	8.4269	0.38	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.2779	0.44	97.87	8.4252	0.39	262.46
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.2841	0.48	96.17	8.4286	0.41	264.07
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.2945	0.41	94.62	8.4463	0.43	265.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.2868	N/A	93.08	8.5021	N/A	267.20
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.2128	N/A	91.58	8.4693	N/A	268.74
26	8.5439	0.32	173.50	8.5597	0.33	186.71	72	8.0463	N/A	90.07	8.4087	N/A	270.24
28	8.5243	0.31	153.71	8.5544	0.32	206.00	74	7.9776	N/A	88.71	8.4209	N/A	271.64
30	8.5106	0.31	144.83	8.5498	0.33	215.02	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.4924	0.30	138.24	8.5511	0.30	221.72	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.4902	0.30	132.90	8.5580	0.35	226.90	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.4816	0.33	128.57	8.5272	0.32	231.37	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.4773	0.35	125.33	8.5267	0.33	235.11	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.4646	0.35	121.67	8.5329	0.33	238.50	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.4541	0.33	118.61	8.5258	0.35	241.55	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.4228	0.39	116.20	8.5152	0.35	244.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

18:00

20:00

I = reference irradiance (W/m²), beam (B) or global (G)

- where, G = B * COS(Z) + D,
 - Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.48
Type-A Interpolating Function, u(int) (%)	±0.28
Combined Standard Uncertainty, $u(c)$ (%)	±0.55
Effective degrees of freedom, DF(c)	12584
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.1
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.4622	0.62111

† Rnet determination date: 06/06/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.83
Offset Uncertainty, U(off) (%)	+1.1 / -1.8
Expanded Uncertainty, U (%)	+2.0 / -2.6
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	NIP	Serial Number:	31763E6
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	NSA	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 31763E6 Eppley NIP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity ($\mu V/W/m^2$), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2.	Instrument Res	ponsivity (R)	and Calibration	Type-B Standar	d Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.1780	0.29	113.93	8.1047	0.30	246.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.1667	0.31	111.25	8.0898	0.30	249.19
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.1755	0.29	109.16	8.0999	0.31	251.38
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.1806	0.29	106.93	8.0908	0.31	253.45
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.1774	0.31	104.89	8.1119	0.31	255.41
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.1839	0.31	103.04	8.0922	0.31	257.34
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.1833	0.30	101.23	8.0973	0.30	259.09
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.1988	0.34	99.47	8.0951	0.30	260.78
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.1968	0.30	97.83	8.1078	0.30	262.52
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.2131	0.30	96.24	8.1089	0.30	264.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.2046	0.30	94.59	8.1016	0.33	265.64
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.2000	N/A	93.08	8.1053	N/A	267.21
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.2065	N/A	91.55	8.1065	N/A	268.70
26	8.1037	0.30	173.47	8.1038	0.30	186.51	72	8.2095	N/A	90.04	8.1240	N/A	270.21
28	8.1159	0.30	153.88	8.0907	0.30	205.96	74	8.2220	N/A	88.71	8.1184	N/A	271.65
30	8.1111	0.31	144.87	8.0907	0.30	215.00	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.1137	0.30	138.19	8.0890	0.31	221.56	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.1356	0.30	132.97	8.1119	0.31	226.94	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.1397	0.29	128.56	8.0763	0.31	231.31	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.1578	0.32	125.21	8.0952	0.31	235.23	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.1608	0.31	121.68	8.1132	0.29	238.52	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.1571	0.31	118.64	8.0988	0.31	241.58	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.1708	0.31	116.17	8.0908	0.29	244.36	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.34
Type-A Interpolating Function, u(int) (%)	±0.23
Combined Standard Uncertainty, u(c) (%)	±0.41
Effective degrees of freedom, DF(c)	8782
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.81
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

× PM

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.1351	0

† Rnet determination date: N/A

• AM

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.67
Offset Uncertainty, U(off) (%)	+0.78 / -0.72
Expanded Uncertainty, U (%)	+1.5 / -1.4
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	NIP	Serial Number:	31875E6
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 31875E6 Eppley NIP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Figure 2. Responsivity vs Local Standard Time

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2	Instrument Respons	ivity (R) and	Calibration Type-F	8 Standard Uncertainty u(B)
	moti uniciti recopono	ivity (it) and	a oundration rype-	

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.5105	0.29	113.93	8.4594	0.30	246.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.5056	0.31	111.25	8.4543	0.30	249.19
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.5015	0.32	109.09	8.4613	0.31	251.38
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.5086	0.29	106.93	8.4581	0.31	253.45
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.5057	0.31	104.89	8.4669	0.31	255.41
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.5105	0.31	103.04	8.4581	0.31	257.34
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.5151	0.30	101.23	8.4589	0.30	259.09
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.5490	0.34	99.47	8.4604	0.30	260.78
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.5330	0.30	97.83	8.4682	0.30	262.52
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.5425	0.30	96.24	8.4683	0.30	264.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.5348	0.30	94.59	8.4660	0.33	265.64
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.5297	N/A	93.08	8.4636	N/A	267.21
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.5387	N/A	91.55	8.4684	N/A	268.70
26	8.4565	0.30	173.47	8.4599	0.30	186.51	72	8.5400	N/A	90.04	8.4836	N/A	270.21
28	8.4614	0.30	153.88	8.4510	0.30	205.96	74	8.5587	N/A	88.71	8.4809	N/A	271.65
30	8.4611	0.31	144.87	8.4548	0.30	215.07	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.4588	0.30	138.19	8.4513	0.31	221.56	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.4725	0.30	132.97	8.4680	0.31	226.94	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.4800	0.29	128.56	8.4429	0.31	231.31	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.5003	0.32	125.27	8.4558	0.31	235.23	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.5006	0.31	121.68	8.4702	0.29	238.52	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.4969	0.31	118.64	8.4618	0.31	241.58	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.4970	0.31	116.17	8.4568	0.29	244.36	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.34
Type-A Interpolating Function, u(int) (%)	±0.21
Combined Standard Uncertainty, $u(c)$ (%)	±0.40
Effective degrees of freedom, DF(c)	11262
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.79
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.4797	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.67
Offset Uncertainty, U(off) (%)	+0.82 / -0.43
Expanded Uncertainty, U (%)	+1.5 / -1.1
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	32026F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	NSA	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1.	Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

32026F3 Eppley PSP

Calibration Results 32026F3 Eppley PSP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

D = reference diffuse irradiance (W/m²).

[1]

Table 2	Instrument Resi	onsivity (R) and	1 Calibration Type-B	Standard Uncertainty u(B)
10010 2.	into thanno int i too		a ounoration rypo b	

Zenith		AM			PM		Zenith		AM			PM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.6763	0.39	113.84	8.6876	0.36	246.92
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.6698	0.38	111.23	8.6819	0.33	249.24
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.6472	0.38	109.04	8.6960	0.35	251.42
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.6523	0.35	106.91	8.6879	0.36	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.6507	0.34	104.90	8.6837	0.37	255.44
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.6330	0.37	103.07	8.6753	0.35	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.6484	0.38	101.23	8.6655	0.36	259.13
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.6390	0.42	99.50	8.6648	0.37	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.6331	0.44	97.87	8.6892	0.39	262.46
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.6621	0.47	96.17	8.7181	0.40	264.07
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.7245	0.41	94.62	8.7535	0.42	265.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.7571	N/A	93.08	8.7996	N/A	267.20
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.6422	N/A	91.58	8.6887	N/A	268.74
26	8.6970	0.32	173.50	8.7118	0.33	186.71	72	8.5812	N/A	90.07	8.6697	N/A	270.24
28	8.6918	0.31	153.71	8.6788	0.32	206.00	74	8.5399	N/A	88.71	8.6834	N/A	271.64
30	8.6908	0.31	144.83	8.6447	0.33	215.02	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.6810	0.30	138.24	8.6260	0.30	221.72	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.6859	0.30	132.90	8.6301	0.35	226.90	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.6857	0.33	128.57	8.6211	0.32	231.37	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.6866	0.34	125.41	8.6445	0.32	235.11	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.6846	0.35	121.67	8.6754	0.33	238.50	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.6871	0.33	118.61	8.6879	0.35	241.55	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.6691	0.39	116.20	8.6988	0.35	244.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.47
Type-A Interpolating Function, u(int) (%)	±0.28
Combined Standard Uncertainty, u(c) (%)	±0.55
Effective degrees of freedom, DF(c)	12751
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.1
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.6807	0.62415

† Rnet determination date: 06/13/2006

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.82
Offset Uncertainty, U(off) (%)	+0.21 / -0.69
Expanded Uncertainty, U (%)	+1.0 / -1.5
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

References:

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5

[6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	8-48	Serial Number:	32882
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 32882 Eppley 8-48

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),

= Win - Wout = Win - $\sigma * Tc^4$

where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

where, G = B * COS(Z) + D,

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

[1]

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.4887	0.31	113.91	8.6200	0.31	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.5078	0.36	111.23	8.6115	0.33	249.17
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.5239	0.32	109.07	8.6273	0.35	251.42
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.5649	0.35	106.91	8.6286	0.34	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.6024	0.35	104.99	8.6561	0.33	255.39
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.7159	0.36	103.02	8.6453	0.33	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.7474	0.38	101.31	8.6592	0.36	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.6626	0.44	99.55	8.6584	0.35	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.6498	0.40	97.82	8.6711	0.36	262.51
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.6534	0.39	96.23	8.6556	0.37	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.6886	0.40	94.62	8.6569	0.39	265.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.6869	N/A	93.04	8.6574	N/A	267.20
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.7046	N/A	91.54	8.6704	N/A	268.69
26	8.3918	0.31	173.54	8.4113	0.31	186.47	72	8.7331	N/A	90.03	8.6796	N/A	270.19
28	8.3908	0.30	153.89	8.4569	0.30	206.03	74	8.7721	N/A	88.71	8.6816	N/A	271.64
30	8.3959	0.29	144.86	8.4899	0.33	214.96	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.4055	0.32	138.25	8.5057	0.31	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.4178	0.31	132.87	8.5367	0.35	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.4296	0.34	128.57	8.5225	0.31	231.28	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.4542	0.35	125.45	8.5539	0.34	235.26	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.4533	0.34	121.62	8.5855	0.34	238.57	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.4607	0.32	118.58	8.5899	0.34	241.55	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.4730	0.31	116.26	8.5941	0.35	244.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.44
Type-A Interpolating Function, u(int) (%)	±0.24
Combined Standard Uncertainty, $u(c)$ (%)	±0.50
Effective degrees of freedom, DF(c)	15280
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.97
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.5418	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.85
Offset Uncertainty, U(off) (%)	+2.4 / -1.7
Expanded Uncertainty, U (%)	+3.3 / -2.6
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	8-48	Serial Number:	33247
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 33247 Eppley 8-48

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),

= Win - Wout = Win - $\sigma * Tc^4$

where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2	Instrument Responsivi	tv (R) an	d Calibration	Type-B Standa	rd Uncertainty u(B)
10010 2.	mothamont recoponent		a canoration	i jpo b otaniaa	i a onoortanity, at	-,

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	9.2356	0.31	113.91	9.2577	0.31	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	9.2625	0.36	111.23	9.2515	0.33	249.17
4	N/A	N/A	N/A	N/A	N/A	N/A	50	9.2748	0.32	109.07	9.2570	0.35	251.42
6	N/A	N/A	N/A	N/A	N/A	N/A	52	9.3275	0.35	106.91	9.2609	0.34	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	9.3774	0.35	104.99	9.2622	0.33	255.39
10	N/A	N/A	N/A	N/A	N/A	N/A	56	9.4887	0.36	103.02	9.2553	0.33	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	9.5482	0.38	101.39	9.2685	0.36	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	9.5783	0.46	99.58	9.2649	0.35	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	9.5281	0.40	97.82	9.2773	0.36	262.51
18	N/A	N/A	N/A	N/A	N/A	N/A	64	9.5356	0.39	96.23	9.2654	0.37	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	9.6308	0.40	94.62	9.2685	0.39	265.69
22	N/A	N/A	N/A	N/A	N/A	N/A	68	9.6627	N/A	93.04	9.2643	N/A	267.20
24	N/A	N/A	N/A	N/A	N/A	N/A	70	9.7088	N/A	91.54	9.2795	N/A	268.69
26	9.1320	0.31	173.54	9.1672	0.31	186.47	72	9.7695	N/A	90.03	9.2921	N/A	270.19
28	9.1059	0.30	153.89	9.2070	0.30	206.03	74	9.8173	N/A	88.71	9.2647	N/A	271.64
30	9.1044	0.29	144.86	9.2208	0.33	214.96	76	N/A	N/A	N/A	N/A	N/A	N/A
32	9.1088	0.32	138.25	9.2414	0.31	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	9.1240	0.31	132.87	9.2603	0.35	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	9.1449	0.34	128.57	9.2383	0.31	231.28	82	N/A	N/A	N/A	N/A	N/A	N/A
38	9.1766	0.35	125.45	9.2499	0.34	235.26	84	N/A	N/A	N/A	N/A	N/A	N/A
40	9.1852	0.34	121.62	9.2643	0.34	238.57	86	N/A	N/A	N/A	N/A	N/A	N/A
42	9.2061	0.32	118.58	9.2658	0.34	241.55	88	N/A	N/A	N/A	N/A	N/A	N/A
44	9.2153	0.31	116.26	9.2625	0.35	244.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- I = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.46
Type-A Interpolating Function, u(int) (%)	±0.29
Combined Standard Uncertainty, $u(c)$ (%)	±0.54
Effective degrees of freedom, DF(c)	10248
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.1
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

Table 4.	Calibration Label	Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
9.2422	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.89
Offset Uncertainty, U(off) (%)	+3.6 / -1.5
Expanded Uncertainty, U (%)	+4.5 / -2.4
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	8-48	Serial Number:	33251
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 33251 Eppley 8-48

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity ($\mu V/W/m^2$), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Z = zenith angle (degrees),

Figure 2. Responsivity vs Local Standard Time

D = reference diffuse irradiance (W/m²).

[1]

Table 2	Instrument Resp	onsivity (R) and	I Calibration Type-F	Standard Uncertainty u(B)
10010 2.	moth annother toop	onority (it) and		

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.2031	0.31	113.91	8.3042	0.31	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.2523	0.36	111.23	8.2937	0.33	249.17
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.2622	0.32	109.07	8.2963	0.35	251.42
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.3036	0.35	106.91	8.2931	0.34	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.3329	0.35	104.99	8.2970	0.33	255.39
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.3458	0.36	103.02	8.2683	0.33	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.3878	0.38	101.31	8.2693	0.36	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.4237	0.46	99.58	8.2610	0.35	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.4389	0.40	97.82	8.2861	0.36	262.51
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.4604	0.39	96.23	8.2701	0.37	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.5181	0.40	94.62	8.2682	0.39	265.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.5177	N/A	93.04	8.2555	N/A	267.20
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.5191	N/A	91.54	8.2687	N/A	268.69
26	8.1718	0.31	173.54	8.2069	0.31	186.47	72	8.5418	N/A	90.03	8.2963	N/A	270.19
28	8.1360	0.30	153.89	8.2518	0.30	206.03	74	8.5687	N/A	88.71	8.3105	N/A	271.64
30	8.1284	0.29	144.86	8.2741	0.33	214.96	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.1290	0.32	138.25	8.2919	0.31	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.1357	0.31	132.87	8.3132	0.35	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.1520	0.34	128.57	8.2987	0.31	231.28	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.1805	0.35	125.45	8.3077	0.34	235.26	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.1887	0.34	121.62	8.3181	0.34	238.57	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.2007	0.32	118.58	8.3122	0.34	241.55	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.2097	0.31	116.26	8.3055	0.35	244.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.46
Type-A Interpolating Function, u(int) (%)	±0.23
Combined Standard Uncertainty, u(c) (%)	±0.51
Effective degrees of freedom, DF(c)	19712
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

	Table 4.	Calibration	Label	Values
--	----------	-------------	-------	--------

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.2609	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.89
Offset Uncertainty, U(off) (%)	+2.0 / -1.6
Expanded Uncertainty, U (%)	+2.9 / -2.5
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	8-48	Serial Number:	33262
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 33262 Eppley 8-48

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity ($\mu V/W/m^2$), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),

= Win - Wout = Win - $\sigma * Tc^4$

where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

where, G = B * COS(Z) + D,

Z =zenith angle (degrees),

Figure 2. Responsivity vs Local Standard Time

D = reference diffuse irradiance (W/m²).

[1]

Table 2	Instrument Resp	onsivity (R) and	I Calibration Type-F	Standard Uncertainty u(B)
10010 2.	moth annother toop	onority (it) and		

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.1529	0.31	113.91	8.1954	0.31	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.1989	0.36	111.23	8.1921	0.33	249.17
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.2077	0.32	109.07	8.2029	0.35	251.42
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.2443	0.35	106.91	8.2077	0.34	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.2658	0.35	104.99	8.2234	0.33	255.39
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.2720	0.36	103.02	8.2154	0.33	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.3043	0.38	101.31	8.2214	0.36	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.3276	0.46	99.58	8.2175	0.35	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.3320	0.40	97.82	8.2214	0.36	262.51
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.3319	0.39	96.23	8.2000	0.37	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.3545	0.40	94.62	8.2019	0.39	265.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.3262	N/A	93.04	8.1967	N/A	267.20
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.3095	N/A	91.54	8.2027	N/A	268.69
26	7.9697	0.31	173.54	7.9952	0.31	186.47	72	8.3093	N/A	90.03	8.2180	N/A	270.19
28	7.9689	0.30	153.89	8.0465	0.30	206.03	74	8.3072	N/A	88.71	8.2310	N/A	271.64
30	7.9855	0.29	144.86	8.0779	0.33	214.96	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.0070	0.32	138.25	8.0994	0.31	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.0309	0.31	132.87	8.1302	0.35	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.0578	0.34	128.57	8.1217	0.31	231.28	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.0972	0.35	125.45	8.1475	0.34	235.26	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.1126	0.34	121.62	8.1733	0.34	238.57	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.1338	0.32	118.58	8.1784	0.34	241.55	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.1588	0.31	116.26	8.1821	0.35	244.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.46
Type-A Interpolating Function, u(int) (%)	±0.24
Combined Standard Uncertainty, u(c) (%)	±0.51
Effective degrees of freedom, DF(c)	17355
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.1765	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.89
Offset Uncertainty, U(off) (%)	+1.8 / -2.3
Expanded Uncertainty, U (%)	+2.7 / -3.2
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	8-48	Serial Number:	33267
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 33267 Eppley 8-48

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win σ * Tc^4
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

- where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

[1]

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.9663	0.31	113.91	9.0635	0.31	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	9.0178	0.36	111.23	9.0586	0.33	249.17
4	N/A	N/A	N/A	N/A	N/A	N/A	50	9.0308	0.32	109.07	9.0721	0.35	251.42
6	N/A	N/A	N/A	N/A	N/A	N/A	52	9.0626	0.35	106.91	9.0818	0.34	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	9.0766	0.36	104.99	9.1026	0.33	255.39
10	N/A	N/A	N/A	N/A	N/A	N/A	56	9.0729	0.36	103.02	9.1019	0.33	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	9.0980	0.38	101.31	9.1224	0.36	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	9.1196	0.46	99.58	9.1410	0.35	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	9.1131	0.40	97.82	9.1553	0.36	262.51
18	N/A	N/A	N/A	N/A	N/A	N/A	64	9.1126	0.39	96.23	9.1491	0.37	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	9.1251	0.40	94.62	9.1611	0.39	265.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	9.0973	N/A	93.04	9.1576	N/A	267.20
24	N/A	N/A	N/A	N/A	N/A	N/A	70	9.0703	N/A	91.54	9.1732	N/A	268.69
26	8.8659	0.31	173.54	8.8798	0.31	186.47	72	9.0567	N/A	90.03	9.1788	N/A	270.19
28	8.8717	0.30	153.89	8.9170	0.30	206.03	74	9.0559	N/A	88.71	9.2072	N/A	271.64
30	8.8812	0.29	144.86	8.9425	0.33	214.96	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.8962	0.32	138.25	8.9597	0.31	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.9131	0.31	132.87	8.9882	0.35	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.9264	0.34	128.57	8.9900	0.31	231.28	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.9508	0.35	125.45	9.0140	0.34	235.26	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.9586	0.34	121.62	9.0340	0.34	238.57	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.9700	0.32	118.58	9.0328	0.34	241.55	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.9858	0.31	116.26	9.0470	0.35	244.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.46
Type-A Interpolating Function, u(int) (%)	±0.19
Combined Standard Uncertainty, $u(c)$ (%)	±0.49
Effective degrees of freedom, DF(c)	35081
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.97
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
9.0212	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.89
Offset Uncertainty, U(off) (%)	+1.3 / -1.6
Expanded Uncertainty, U (%)	+2.2 / -2.4
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	8-48	Serial Number:	33273
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:
Calibration Results 33273 Eppley 8-48

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	9.6474	0.31	113.84	9.7382	0.31	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	9.6710	0.36	111.23	9.7355	0.33	249.17
4	N/A	N/A	N/A	N/A	N/A	N/A	50	9.6765	0.32	109.07	9.7518	0.35	251.42
6	N/A	N/A	N/A	N/A	N/A	N/A	52	9.7108	0.35	106.91	9.7603	0.34	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	9.7273	0.35	104.99	9.7771	0.33	255.39
10	N/A	N/A	N/A	N/A	N/A	N/A	56	9.7200	0.36	103.02	9.7741	0.33	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	9.7473	0.38	101.31	9.7833	0.36	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	9.7509	0.46	99.58	9.7824	0.35	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	9.7431	0.40	97.82	9.7904	0.36	262.51
18	N/A	N/A	N/A	N/A	N/A	N/A	64	9.7354	0.39	96.23	9.7671	0.37	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	9.7672	0.40	94.62	9.7574	0.39	265.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	9.7436	N/A	93.04	9.7489	N/A	267.20
24	N/A	N/A	N/A	N/A	N/A	N/A	70	9.7390	N/A	91.54	9.7478	N/A	268.69
26	9.5219	0.31	173.54	9.5447	0.31	186.47	72	9.7349	N/A	90.03	9.7485	N/A	270.19
28	9.5249	0.30	153.89	9.5825	0.30	206.03	74	9.7367	N/A	88.71	9.7508	N/A	271.64
30	9.5399	0.29	144.86	9.6082	0.33	214.96	76	N/A	N/A	N/A	N/A	N/A	N/A
32	9.5534	0.32	138.25	9.6303	0.31	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	9.5690	0.31	132.87	9.6647	0.35	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	9.5915	0.34	128.57	9.6520	0.31	231.28	82	N/A	N/A	N/A	N/A	N/A	N/A
38	9.6172	0.35	125.45	9.6830	0.34	235.26	84	N/A	N/A	N/A	N/A	N/A	N/A
40	9.6263	0.34	121.62	9.7131	0.34	238.57	86	N/A	N/A	N/A	N/A	N/A	N/A
42	9.6392	0.32	118.58	9.7214	0.34	241.55	88	N/A	N/A	N/A	N/A	N/A	N/A
44	9.6493	0.31	116.26	9.7241	0.35	244.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.46
Type-A Interpolating Function, u(int) (%)	±0.26
Combined Standard Uncertainty, $u(c)$ (%)	±0.52
Effective degrees of freedom, DF(c)	14186
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
9.6908	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.89
Offset Uncertainty, U(off) (%)	+0.95 / -1.6
Expanded Uncertainty, U (%)	+1.8 / -2.5
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	8-48	Serial Number:	33279
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 33279 Eppley 8-48

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity ($\mu V/W/m^2$), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

- where, G = B * COS(Z) + D,
 - Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

[1]

Cabla 2	Instrument Decomposivity	(\mathbf{D})	nd Calibration	Tunn D	Standard Uncortainty	/D\
apre 2.		והומו		IVDE-D	Stanuaru Uncertainty.	. นเอง
		· · ·		J 11 1		

Zenith		AM			PM		Zenith		AM			ΡM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.8029	0.31	113.91	8.8987	0.31	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.8460	0.36	111.23	8.9012	0.33	249.17
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.8533	0.32	109.07	8.9192	0.35	251.42
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.8856	0.35	106.91	8.9273	0.34	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.9013	0.35	104.99	8.9468	0.33	255.39
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.8992	0.36	103.02	8.9460	0.33	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.9282	0.38	101.31	8.9638	0.36	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.9413	0.46	99.58	8.9712	0.35	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.9357	0.40	97.82	8.9905	0.36	262.51
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.9329	0.39	96.23	8.9881	0.37	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.9637	0.40	94.62	9.0006	0.39	265.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.9486	N/A	93.04	9.0028	N/A	267.20
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.9530	N/A	91.54	9.0086	N/A	268.69
26	8.6293	0.31	173.54	8.6430	0.31	186.47	72	8.9662	N/A	90.03	9.0081	N/A	270.19
28	8.6464	0.30	153.89	8.6863	0.30	206.03	74	8.9816	N/A	88.71	9.0163	N/A	271.64
30	8.6702	0.29	144.86	8.7177	0.33	214.96	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.6901	0.32	138.25	8.7491	0.31	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.7070	0.31	132.87	8.7854	0.35	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.7284	0.34	128.57	8.7841	0.31	231.28	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.7631	0.35	125.45	8.8150	0.34	235.26	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.7700	0.34	121.62	8.8483	0.34	238.57	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.7866	0.32	118.58	8.8666	0.34	241.55	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.8013	0.31	116.26	8.8797	0.35	244.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.46
Type-A Interpolating Function, u(int) (%)	±0.23
Combined Standard Uncertainty, $u(c)$ (%)	±0.51
Effective degrees of freedom, DF(c)	21203
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.00
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.8488	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.89
Offset Uncertainty, U(off) (%)	+1.4 / -2.0
Expanded Uncertainty, U (%)	+2.3 / -2.9
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	8-48	Serial Number:	33386
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 33386 Eppley 8-48

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2.	Instrument Res	ponsivity (R) and	Calibration Type-B	Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.9694	0.31	113.91	9.0195	0.31	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	9.0427	0.37	111.23	9.0224	0.33	249.17
4	N/A	N/A	N/A	N/A	N/A	N/A	50	9.0541	0.32	109.07	9.0407	0.35	251.42
6	N/A	N/A	N/A	N/A	N/A	N/A	52	9.0980	0.35	106.91	9.0559	0.34	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	9.1238	0.35	104.99	9.0812	0.33	255.39
10	N/A	N/A	N/A	N/A	N/A	N/A	56	9.1306	0.36	103.02	9.0851	0.33	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	9.1709	0.38	101.31	9.1045	0.36	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	9.2022	0.43	99.55	9.1121	0.35	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	9.2054	0.40	97.82	9.1237	0.36	262.51
18	N/A	N/A	N/A	N/A	N/A	N/A	64	9.2147	0.39	96.23	9.1097	0.37	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	9.2577	0.40	94.62	9.1250	0.39	265.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	9.2491	N/A	93.04	9.1289	N/A	267.20
24	N/A	N/A	N/A	N/A	N/A	N/A	70	9.2568	N/A	91.54	9.1509	N/A	268.69
26	8.8027	0.31	173.74	8.8135	0.31	186.47	72	9.2847	N/A	90.03	9.1737	N/A	270.19
28	8.8128	0.30	153.89	8.8469	0.30	206.03	74	9.3241	N/A	88.71	9.1949	N/A	271.64
30	8.8253	0.29	144.86	8.8709	0.33	214.96	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.8386	0.32	138.25	8.8904	0.31	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.8524	0.31	132.87	8.9200	0.35	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.8736	0.34	128.57	8.9145	0.31	231.28	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.9144	0.35	125.45	8.9448	0.34	235.26	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.9238	0.34	121.62	8.9746	0.34	238.57	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.9469	0.32	118.58	8.9887	0.34	241.55	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.9734	0.31	116.26	9.0008	0.35	244.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.43
Type-A Interpolating Function, u(int) (%)	±0.23
Combined Standard Uncertainty, $u(c)$ (%)	±0.49
Effective degrees of freedom, DF(c)	16112
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.97
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.9973	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.85
Offset Uncertainty, U(off) (%)	+2.3 / -1.9
Expanded Uncertainty, U (%)	+3.1 / -2.8
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	8-48	Serial Number:	34281
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 34281 Eppley 8-48

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Figure 2. Responsivity vs Local Standard Time

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2.	Instrument Res	nonsivity (R) and Calibration	Type-B Standard	Uncertainty, u(B)
					•

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	10.010	0.31	113.84	10.076	0.31	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	10.039	0.36	111.23	10.056	0.33	249.17
4	N/A	N/A	N/A	N/A	N/A	N/A	50	10.036	0.32	109.07	10.061	0.35	251.42
6	N/A	N/A	N/A	N/A	N/A	N/A	52	10.059	0.35	106.91	10.049	0.34	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	10.061	0.35	104.99	10.064	0.33	255.39
10	N/A	N/A	N/A	N/A	N/A	N/A	56	10.046	0.36	103.02	10.034	0.33	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	10.066	0.38	101.31	10.031	0.36	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	10.078	0.46	99.58	10.012	0.35	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	10.087	0.40	97.82	10.018	0.36	262.51
18	N/A	N/A	N/A	N/A	N/A	N/A	64	10.093	0.39	96.23	9.9943	0.37	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	10.128	0.40	94.62	9.9970	0.39	265.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	10.102	N/A	93.04	9.9925	N/A	267.20
24	N/A	N/A	N/A	N/A	N/A	N/A	70	10.082	N/A	91.54	9.9837	N/A	268.69
26	9.9935	0.31	173.54	10.012	0.31	186.47	72	10.044	N/A	90.03	9.9583	N/A	270.19
28	9.9800	0.30	153.89	10.024	0.30	206.03	74	10.023	N/A	88.71	9.9319	N/A	271.64
30	9.9814	0.29	144.86	10.039	0.33	214.96	76	N/A	N/A	N/A	N/A	N/A	N/A
32	9.9895	0.32	138.25	10.042	0.31	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	9.9963	0.31	132.87	10.070	0.35	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	10.007	0.34	128.57	10.045	0.31	231.28	82	N/A	N/A	N/A	N/A	N/A	N/A
38	10.033	0.35	125.45	10.063	0.34	235.26	84	N/A	N/A	N/A	N/A	N/A	N/A
40	10.027	0.34	121.62	10.086	0.34	238.57	86	N/A	N/A	N/A	N/A	N/A	N/A
42	10.020	0.32	118.58	10.075	0.34	241.55	88	N/A	N/A	N/A	N/A	N/A	N/A
44	10.021	0.31	116.26	10.066	0.35	244.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.46
Type-A Interpolating Function, u(int) (%)	±0.21
Combined Standard Uncertainty, $u(c)$ (%)	±0.50
Effective degrees of freedom, DF(c)	25561
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.99
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
10.043	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.89
Offset Uncertainty, U(off) (%)	+0.43 / -0.61
Expanded Uncertainty, U (%)	+1.3 / -1.5
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	35830F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	AMF#2	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

	Table 1. Traceability		
Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

35830F3 Eppley PSP

Calibration Results 35830F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

where, G = B * COS(Z) + D,

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

[1]

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.8321	0.39	113.84	7.9225	0.36	246.92
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.8150	0.38	111.23	7.9124	0.33	249.24
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.7872	0.38	109.04	7.9208	0.35	251.42
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.7809	0.35	106.91	7.9096	0.36	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.7681	0.34	104.90	7.9038	0.37	255.44
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.7428	0.37	103.07	7.8892	0.35	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.7461	0.38	101.23	7.8742	0.36	259.13
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.7303	0.42	99.50	7.8710	0.37	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.7034	0.43	97.87	7.8788	0.39	262.46
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.7030	0.47	96.17	7.8763	0.40	264.07
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.7224	0.41	94.62	7.8683	0.42	265.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.7152	N/A	93.08	7.8629	N/A	267.20
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.7074	N/A	91.58	7.8379	N/A	268.74
26	7.9696	0.32	173.50	7.9851	0.33	186.71	72	7.6471	N/A	90.07	7.8047	N/A	270.24
28	7.9472	0.30	153.71	7.9755	0.32	206.00	74	7.6130	N/A	88.71	7.8080	N/A	271.64
30	7.9316	0.31	144.83	7.9683	0.33	215.02	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.9104	0.30	138.24	7.9624	0.30	221.72	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.9055	0.30	132.90	7.9704	0.35	226.90	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.8948	0.33	128.57	7.9456	0.32	231.37	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.8871	0.34	125.41	7.9443	0.32	235.11	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.8749	0.35	121.67	7.9504	0.33	238.50	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.8627	0.33	118.61	7.9454	0.35	241.55	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.8350	0.39	116.20	7.9403	0.35	244.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.47
Type-A Interpolating Function, u(int) (%)	±0.26
Combined Standard Uncertainty, $u(c)$ (%)	±0.54
Effective degrees of freedom, DF(c)	14725
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.1
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.8801	0.54714

† Rnet determination date: 08/05/2009

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.82
Offset Uncertainty, U(off) (%)	+1.1 / -1.9
Expanded Uncertainty, U (%)	+2.0 / -2.7
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	8-48	Serial Number:	35864
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 35864 Eppley 8-48

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Figure 2. Responsivity vs Local Standard Time

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.4557	0.31	113.91	8.5093	0.31	246.86
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.4996	0.36	111.23	8.4972	0.33	249.17
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.5061	0.32	109.07	8.4990	0.35	251.42
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.5401	0.35	106.91	8.4999	0.34	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.5525	0.36	104.99	8.5119	0.33	255.39
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.5497	0.36	103.02	8.5008	0.33	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.5767	0.38	101.31	8.5076	0.36	259.08
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.5996	0.46	99.58	8.5063	0.35	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.5906	0.40	97.82	8.5115	0.36	262.51
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.5809	0.39	96.23	8.4933	0.37	264.13
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.5840	0.40	94.62	8.5027	0.39	265.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.5448	N/A	93.04	8.4978	N/A	267.20
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.5157	N/A	91.54	8.4990	N/A	268.69
26	8.3532	0.31	173.54	8.3697	0.31	186.47	72	8.4769	N/A	90.03	8.4996	N/A	270.19
28	8.3541	0.30	153.89	8.4047	0.30	206.03	74	8.4478	N/A	88.71	8.5010	N/A	271.64
30	8.3660	0.29	144.86	8.4267	0.33	214.96	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.3792	0.32	138.25	8.4427	0.31	221.66	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.3945	0.31	132.87	8.4674	0.35	226.88	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.4096	0.34	128.57	8.4595	0.31	231.28	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.4397	0.35	125.45	8.4785	0.34	235.26	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.4437	0.34	121.62	8.4981	0.34	238.57	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.4558	0.32	118.58	8.5005	0.34	241.55	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.4720	0.31	116.26	8.5059	0.35	244.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.46
Type-A Interpolating Function, u(int) (%)	±0.22
Combined Standard Uncertainty, u(c) (%)	±0.51
Effective degrees of freedom, DF(c)	21874
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.99
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.4908	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.89
Offset Uncertainty, U(off) (%)	+1.3 / -1.5
Expanded Uncertainty, U (%)	+2.2 / -2.4
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	36291F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	AMF#2	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability									
Measurement Type	Instrument	Calibration Date	Calibration Due Date						
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021						
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021						
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022						
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022						
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022						
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022						
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022						
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022						
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022						

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

36291F3 Eppley PSP

Calibration Results 36291F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- *Wnet* = effective net infrared measured by pyrgeometer (W/m^2),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	9.0946	0.40	113.84	9.0706	0.39	246.92
2	N/A	N/A	N/A	N/A	N/A	N/A	48	9.0692	0.39	111.23	9.0480	0.36	249.24
4	N/A	N/A	N/A	N/A	N/A	N/A	50	9.0353	0.40	109.04	9.0538	0.38	251.42
6	N/A	N/A	N/A	N/A	N/A	N/A	52	9.0385	0.37	106.91	9.0298	0.39	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	9.0226	0.36	104.90	9.0173	0.41	255.44
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.9832	0.40	103.07	8.9858	0.40	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.9816	0.41	101.23	8.9626	0.41	259.13
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.9605	0.47	99.50	8.9512	0.43	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.9363	0.46	97.87	8.9396	0.45	262.46
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.9277	0.50	96.17	8.9265	0.47	264.07
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.9609	0.44	94.62	8.9022	0.50	265.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.9612	N/A	93.08	8.9062	N/A	267.20
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.9190	N/A	91.58	8.8752	N/A	268.74
26	9.2012	0.34	173.50	9.2046	0.35	186.73	72	8.7379	N/A	90.04	8.8467	N/A	270.24
28	9.1839	0.32	153.71	9.1739	0.34	206.00	74	8.5531	N/A	88.71	8.7680	N/A	271.55
30	9.1631	0.33	144.83	9.1612	0.35	215.02	76	N/A	N/A	N/A	N/A	N/A	N/A
32	9.1473	0.32	138.24	9.1550	0.32	221.72	78	N/A	N/A	N/A	N/A	N/A	N/A
34	9.1482	0.32	132.90	9.1667	0.36	226.90	80	N/A	N/A	N/A	N/A	N/A	N/A
36	9.1396	0.34	128.57	9.1276	0.34	231.37	82	N/A	N/A	N/A	N/A	N/A	N/A
38	9.1357	0.37	125.33	9.1261	0.35	235.11	84	N/A	N/A	N/A	N/A	N/A	N/A
40	9.1330	0.37	121.67	9.1291	0.35	238.50	86	N/A	N/A	N/A	N/A	N/A	N/A
42	9.1255	0.35	118.61	9.1159	0.38	241.55	88	N/A	N/A	N/A	N/A	N/A	N/A
44	9.0936	0.41	116.20	9.0919	0.38	244.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- I = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.50
Type-A Interpolating Function, u(int) (%)	±0.29
Combined Standard Uncertainty, u(c) (%)	±0.58
Effective degrees of freedom, DF(c)	13623
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.1
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
9.0822	0.60000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.91
Offset Uncertainty, U(off) (%)	+0.93 / -1.4
Expanded Uncertainty, U (%)	+1.8 / -2.4
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	NIP	Serial Number:	37286E6
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	AMF	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 37286E6 Eppley NIP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- *Wnet* = effective net infrared measured by pyrgeometer (W/m^2),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Figure 2. Responsivity vs Local Standard Time

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

Table 2.	Instrument Res	ponsivity (R) ar	d Calibration Tv	vpe-B Standard	Jncertaintv. u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.1788	0.29	113.93	8.1450	0.30	246.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.1758	0.31	111.25	8.1401	0.30	249.19
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.1813	0.32	109.09	8.1490	0.31	251.38
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.1852	0.29	106.93	8.1435	0.31	253.45
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.1818	0.31	104.89	8.1497	0.31	255.41
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.1896	0.31	103.04	8.1473	0.31	257.34
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.1919	0.30	101.23	8.1508	0.30	259.09
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.2222	0.34	99.47	8.1439	0.30	260.78
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.2085	0.30	97.83	8.1594	0.30	262.52
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.2099	0.30	96.24	8.1528	0.30	264.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.2050	0.30	94.59	8.1546	0.33	265.64
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.1998	N/A	93.08	8.1541	N/A	267.21
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.2053	N/A	91.55	8.1544	N/A	268.70
26	8.1441	0.30	173.47	8.1465	0.30	186.51	72	8.2021	N/A	90.04	8.1649	N/A	270.21
28	8.1503	0.30	153.88	8.1413	0.30	205.96	74	8.2173	N/A	88.71	8.1668	N/A	271.65
30	8.1533	0.31	144.87	8.1419	0.30	215.00	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.1505	0.30	138.19	8.1432	0.31	221.56	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.1654	0.30	132.97	8.1516	0.31	226.94	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.1670	0.29	128.56	8.1399	0.31	231.31	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.1804	0.32	125.27	8.1439	0.31	235.23	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.1805	0.31	121.68	8.1514	0.29	238.52	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.1731	0.31	118.64	8.1517	0.31	241.58	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.1737	0.31	116.17	8.1471	0.29	244.36	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.34
Type-A Interpolating Function, u(int) (%)	±0.17
Combined Standard Uncertainty, u(c) (%)	±0.38
Effective degrees of freedom, DF(c)	22755
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.75
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.1646	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.67
Offset Uncertainty, U(off) (%)	+0.71 / -0.30
Expanded Uncertainty, U (%)	+1.4 / -0.97
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology., 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	37297F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	AMF	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

	Table 1. Traceability		
Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 37297F3 Eppley PSP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity ($\mu V/W/m^2$), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2	Instrument Res	nonsivity (R) an	d Calibration Type-F	8 Standard Uncertainty u(B)
10010 21				

Zenith		AM			ΡM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.2927	0.41	113.84	8.1924	0.40	246.92
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.2890	0.40	111.23	8.2117	0.37	249.24
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.2641	0.41	109.04	8.2870	0.39	251.42
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.2676	0.38	106.91	8.3284	0.40	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.2604	0.37	104.90	8.3442	0.41	255.44
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.2439	0.40	103.07	8.3274	0.41	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.2625	0.41	101.23	8.3170	0.42	259.13
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.2664	0.41	99.45	8.3208	0.44	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.2469	0.46	97.87	8.3271	0.46	262.46
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.2412	0.51	96.17	8.3374	0.48	264.07
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.2450	0.45	94.62	8.3329	0.51	265.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.1857	N/A	93.08	8.3319	N/A	267.20
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.1202	N/A	91.58	8.3162	N/A	268.74
26	8.3423	0.34	173.50	8.3400	0.35	186.71	72	7.9573	N/A	90.09	8.3019	N/A	270.24
28	8.3380	0.33	153.71	8.3109	0.34	206.00	74	N/A	N/A	N/A	8.3019	N/A	271.68
30	8.3317	0.33	144.83	8.3068	0.35	215.02	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.3190	0.32	138.24	8.3185	0.33	221.72	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.3178	0.32	132.90	8.3402	0.37	226.90	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.3127	0.35	128.57	8.3243	0.35	231.37	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.3090	0.36	125.41	8.3058	0.35	235.11	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.3071	0.37	121.67	8.2631	0.36	238.50	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.3029	0.36	118.61	8.2193	0.38	241.55	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.2881	0.41	116.20	8.1985	0.39	244.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

I = reference irradiance (W/m²), beam (B) or global (G)

- where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.51
Type-A Interpolating Function, u(int) (%)	±0.25
Combined Standard Uncertainty, u(c) (%)	±0.57
Effective degrees of freedom, DF(c)	21140
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.1
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.2387	0.60000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

±0.86
+1.3 / -0.56
+2.1 / -1.4
+Inf
1.96
30.0° to 60.0°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619. [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Precision Spectral Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	PSP	Serial Number:	37300F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	NSA	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

	Table 1. Traceability		
Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 37300F3 Eppley PSP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

where, G = B * COS(Z) + D,

T-1-1-0	1	1.16. (D)		D O ((((((((((
i able 2.	Instrument Respons	Sivity (R) and	a Calibration Type-	B Standard Uncertainty	, u(в)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.8640	0.40	113.84	8.8695	0.39	246.92
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.8507	0.40	111.23	8.8576	0.36	249.24
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.8294	0.40	109.04	8.8665	0.39	251.42
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.8360	0.37	106.91	8.8574	0.40	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.8287	0.36	104.90	8.8611	0.41	255.44
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.8113	0.40	103.07	8.8498	0.40	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.8303	0.41	101.23	8.8442	0.41	259.13
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.8259	0.45	99.50	8.8464	0.43	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.8150	0.46	97.87	8.8588	0.45	262.46
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.8217	0.50	96.17	8.8655	0.47	264.07
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.8439	0.44	94.62	8.8673	0.50	265.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.8091	N/A	93.08	8.8746	N/A	267.20
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.7595	N/A	91.58	8.8607	N/A	268.74
26	8.8868	0.34	173.50	8.8779	0.35	186.73	72	8.6810	N/A	90.07	8.8663	N/A	270.24
28	8.8929	0.32	153.71	8.8292	0.34	206.00	74	8.6312	N/A	88.71	8.8980	N/A	271.64
30	8.8876	0.33	144.83	8.8166	0.35	215.02	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.8778	0.32	138.24	8.8205	0.33	221.72	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.8846	0.32	132.90	8.8508	0.37	226.90	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.8827	0.34	128.57	8.8430	0.34	231.37	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.8829	0.37	125.33	8.8713	0.35	235.11	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.8778	0.37	121.67	8.8945	0.35	238.50	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.8751	0.35	118.61	8.8916	0.38	241.55	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.8563	0.41	116.20	8.8809	0.38	244.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

0.51 0.48-0.46-0.44-@0.42-@0.40-0.38-0.36-0.34 0.31-0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Zenith Angle (degrees) u(B) Max = 0.50 DF Max = +Inf • AM × PM

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.50
Type-A Interpolating Function, u(int) (%)	±0.25
Combined Standard Uncertainty, u(c) (%)	±0.56
Effective degrees of freedom, DF(c)	20520
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.1
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.8673	0.60000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.88
Offset Uncertainty, U(off) (%)	+0.31 / -0.63
Expanded Uncertainty, U (%)	+1.2 / -1.5
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	sNIP	Serial Number:	37945E6
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 37945E6 Eppley sNIP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity ($\mu V/W/m^2$), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$

I = reference irradiance (W/m²), beam (B) or global (G)

D = reference diffuse irradiance (W/m²).

[1]

Table 2	Instrument Responsivit	v (R	2) and Calibration '	Tvne-R	Standard Uncertainty	11(R)
	moti uniciti recoponoren	y (!''		I y pc-D	otuniaana oneertainty	, 4(2)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.3942	0.29	113.93	8.3897	0.30	246.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.4038	0.31	111.25	8.3889	0.30	249.19
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.4094	0.29	109.16	8.3932	0.31	251.38
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.4085	0.29	106.93	8.3923	0.31	253.45
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.4149	0.31	104.89	8.3917	0.31	255.41
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.4126	0.31	103.04	8.3891	0.31	257.34
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.4125	0.30	101.23	8.3899	0.30	259.09
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.4171	0.34	99.47	8.3855	0.30	260.78
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.4144	0.30	97.83	8.3917	0.30	262.52
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.4152	0.30	96.24	8.3935	0.30	264.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.4167	0.30	94.59	8.3941	0.33	265.64
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.4135	N/A	93.15	8.3904	N/A	267.21
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.4142	N/A	91.55	8.3890	N/A	268.70
26	8.3557	0.30	173.47	8.2743	0.29	183.61	72	8.4153	N/A	90.04	8.3947	N/A	270.21
28	8.4023	0.30	153.88	8.3933	0.30	205.96	74	8.4193	N/A	88.71	8.3886	N/A	271.65
30	8.4004	0.31	144.87	8.3928	0.30	215.07	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.3462	0.30	138.19	8.3942	0.31	221.56	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.3981	0.30	132.97	8.3975	0.31	226.94	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.4109	0.29	128.56	8.3913	0.31	231.31	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.3979	0.34	124.82	8.3903	0.31	235.23	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.3910	0.31	121.53	8.3920	0.29	238.52	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.3957	0.31	118.64	8.3938	0.31	241.58	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.3884	0.31	116.17	8.3942	0.29	244.36	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.34
Type-A Interpolating Function, u(int) (%)	±0.33
Combined Standard Uncertainty, $u(c)$ (%)	±0.48
Effective degrees of freedom, DF(c)	3264
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.94
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.3957	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.67
Offset Uncertainty, U(off) (%)	+0.26 / -0.59
Expanded Uncertainty, U (%)	+0.93 / -1.3
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Normal Incidence Pyrheliometer	Manufacturer:	Eppley
Model:	sNIP	Serial Number:	37946E6
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022

† Through the World Radiometric Reference (WRR)

Number of pages of certificate: 4

ARN

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 37946E6 Eppley sNIP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2. Instrument Responsivity (R) and Calibration Type-B Standard Uncertainty, u(B)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.5576	0.29	113.93	8.5398	0.30	246.88
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.5575	0.31	111.25	8.5379	0.30	249.19
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.5612	0.29	109.16	8.5400	0.31	251.38
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.5655	0.29	106.93	8.5408	0.31	253.45
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.5641	0.31	104.89	8.5452	0.31	255.41
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.5620	0.31	103.04	8.5382	0.31	257.34
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.5631	0.30	101.23	8.5386	0.30	259.09
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.5707	0.34	99.47	8.5382	0.30	260.78
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.5716	0.30	97.83	8.5402	0.30	262.52
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.5732	0.30	96.24	8.5442	0.30	264.10
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.5677	0.30	94.59	8.5428	0.33	265.64
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.5655	N/A	93.08	8.5428	N/A	267.21
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.5644	N/A	91.55	8.5399	N/A	268.70
26	8.5373	0.30	173.47	8.5365	0.30	186.51	72	8.5642	N/A	90.04	8.5485	N/A	270.21
28	8.5424	0.30	153.88	8.5317	0.30	205.96	74	8.5655	N/A	88.71	8.5399	N/A	271.65
30	8.5445	0.31	144.87	8.5322	0.30	215.07	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.5452	0.30	138.19	8.5323	0.31	221.56	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.5540	0.30	132.97	8.5385	0.31	226.94	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.5560	0.29	128.56	8.5327	0.31	231.31	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.5582	0.31	125.40	8.5361	0.31	235.23	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.5617	0.31	121.68	8.5373	0.29	238.52	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.5564	0.31	118.64	8.5387	0.31	241.58	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.5587	0.31	116.17	8.5389	0.29	244.36	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

- I = reference irradiance (W/m²), beam (B) or global (G)
 - where, G = B * COS(Z) + D,
 - Z =zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.34
Type-A Interpolating Function, u(int) (%)	±0.099
Combined Standard Uncertainty, u(c) (%)	±0.36
Effective degrees of freedom, DF(c)	138791
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±0.70
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.5527	0

† Rnet determination date: N/A

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.67		
Offset Uncertainty, U(off) (%)	+0.21 / -0.24		
Expanded Uncertainty, U (%)	+0.88 / -0.91		
Effective degrees of freedom, DF	+Inf		
Coverage factor, k	1.96		
Valid zenith angle range	30.0° to 60.0°		

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology., 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Metrology Laboratory

Calibration Certificate

Test Instrument:	Standard Precision Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	SPP	Serial Number:	38909F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability						
Measurement Type	Instrument	Calibration Date	Calibration Due Date			
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021			
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021			
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022			
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022			
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022			
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022			
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022			
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022			
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022			

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:
Calibration Results 38909F3 Eppley SPP

The responsivity (R, µV/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- V = radiometer output voltage (microvolts),
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win σ * Tc^4
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

Table 2	Instrument Responsi	ity (R) and	Calibration Type-	B Standard Und	ertainty u(R)
10010 2.	mou ument responsi	nuy (iu) unu	ounbracion Type-		citumity, u(D)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	(µV/W/m²)	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	8.3242	0.38	113.84	8.3150	0.36	246.92
2	N/A	N/A	N/A	N/A	N/A	N/A	48	8.2988	0.37	111.23	8.2935	0.32	249.24
4	N/A	N/A	N/A	N/A	N/A	N/A	50	8.2785	0.38	109.04	8.2942	0.34	251.42
6	N/A	N/A	N/A	N/A	N/A	N/A	52	8.2820	0.35	106.91	8.2734	0.35	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	8.2687	0.33	104.90	8.2693	0.36	255.44
10	N/A	N/A	N/A	N/A	N/A	N/A	56	8.2456	0.37	103.07	8.2439	0.34	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	8.2599	0.38	101.23	8.2226	0.35	259.13
14	N/A	N/A	N/A	N/A	N/A	N/A	60	8.2446	0.42	99.50	8.2030	0.36	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	8.2404	0.43	97.87	8.1853	0.37	262.46
18	N/A	N/A	N/A	N/A	N/A	N/A	64	8.2422	0.47	96.17	8.1556	0.39	264.07
20	N/A	N/A	N/A	N/A	N/A	N/A	66	8.2516	0.41	94.62	8.1061	0.41	265.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	8.2399	N/A	93.08	8.0655	N/A	267.20
24	N/A	N/A	N/A	N/A	N/A	N/A	70	8.2391	N/A	91.58	8.0209	N/A	268.74
26	8.4134	0.32	173.50	8.4226	0.33	186.71	72	8.1993	N/A	90.07	7.9612	N/A	270.24
28	8.4051	0.30	153.71	8.4085	0.32	206.00	74	8.1766	N/A	88.71	7.8692	N/A	271.64
30	8.3941	0.31	144.83	8.4053	0.33	215.02	76	N/A	N/A	N/A	N/A	N/A	N/A
32	8.3870	0.30	138.24	8.3964	0.30	221.72	78	N/A	N/A	N/A	N/A	N/A	N/A
34	8.3884	0.30	132.90	8.4037	0.34	226.90	80	N/A	N/A	N/A	N/A	N/A	N/A
36	8.3838	0.32	128.57	8.3579	0.31	231.37	82	N/A	N/A	N/A	N/A	N/A	N/A
38	8.3616	0.35	125.33	8.3628	0.32	235.11	84	N/A	N/A	N/A	N/A	N/A	N/A
40	8.3633	0.35	121.66	8.3690	0.32	238.50	86	N/A	N/A	N/A	N/A	N/A	N/A
42	8.3545	0.33	118.61	8.3514	0.35	241.55	88	N/A	N/A	N/A	N/A	N/A	N/A
44	8.3173	0.39	116.20	8.3304	0.35	244.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

I = reference irradiance (W/m²), beam (B) or global (G)

- where, G = B * COS(Z) + D,
 - Z = zenith angle (degrees),
 - D = reference diffuse irradiance (W/m²).

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.47
Type-A Interpolating Function, u(int) (%)	±0.24
Combined Standard Uncertainty, $u(c)$ (%)	±0.53
Effective degrees of freedom, DF(c)	18269
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

Table 4. Calibration Label Values

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
8.3182	0.22000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.81
Offset Uncertainty, U(off) (%)	+1.0 / -1.4
Expanded Uncertainty, U (%)	+1.9 / -2.2
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

Figure 5. History of instrument at Zenith Angle = 45°

References:

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Southern Great Plains Radiometer Calibration Facility National Renewable Energy Laboratory

Metrology Laboratory

Calibration Certificate

Test Instrument:	Standard Precision Pyranometer (Ventilated)	Manufacturer:	Eppley
Model:	SPP	Serial Number:	38910F3
Calibration Date:	8/25/2021	Due Date:	8/25/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/24-25		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the International System (SI) Units of Measurement.

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

The Type-B Standard Uncertainty of using the responsivity at each even zenith angle is reported, and the Expanded Uncertainty of the calibration is reported using two methods:

- 1. The Expanded Uncertainty of using the responsivity at zenith angle = 45°, within the zenith angle range from 30.0° to 60.0°
- 2. The Expanded Uncertainty of using Spline Interpolating Functions for the responsivity versus zenith angle.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability						
Measurement Type	Instrument	Calibration Date	Calibration Due Date			
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 29222	09/23/2019	09/23/2021			
Beam Irradiance †	Eppley Absolute Cavity Radiometer Model HF, S/N 30495	09/23/2019	09/23/2021			
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2551	07/01/2020	07/01/2022			
Diffuse Irradiance †	Hukseflux Pyranometer Model SR25-T2, S/N 2552	07/01/2020	07/01/2022			
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/26/2021	04/26/2022			
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/26/2021	04/26/2022			
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/26/2021	04/26/2022			
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/26/2021	04/26/2022			
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29926F3	02/19/2020	02/19/2022			

† Through the World Radiometric Reference (WRR)

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARK/

Calibration Procedure: SGP BORCAL Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the sun as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits. The shading disk for the reference diffuse subtends a solid angle of 5°. Pyrheliometers are installed on solar trackers.

Calibrated by: Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Peter.Gotseff@nrel.gov; 303-384-6327; 15013 Denver West Parkway, Golden, CO 80401, USA

Calibration Results 38910F3 Eppley SPP

The responsivity (R, μ V/W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

R = (V - Rnet * Wnet) / I

where,

- = radiometer output voltage (microvolts), V
- *Rnet* = radiometer net infrared responsivity (μ V/W/m²), see Table 4,
- Wnet = effective net infrared measured by pyrgeometer (W/m²),
 - = Win Wout = Win $\sigma * Tc^4$
 - where, Win = incoming infrared (W/m²), σ = 5.6704e-8 W·m-2·K-4, Tc = case temperature of pyrgeometer (K).

where, G = B * COS(Z) + D,

I = reference irradiance (W/m²), beam (B) or global (G)

Z =zenith angle (degrees),

D = reference diffuse irradiance (W/m²).

Tahla 2	Instrument Res	noneivity (P	and Calibration	Type-B Standard	Incortainty u(R)
	mati ument itea	polisivity (it		Type-D Otanuart	i Oncertainty, u(D)

Zenith		AM			PM		Zenith		AM			РM	
Angle	R	u(B)	Azimuth	R	u(B)	Azimuth	Angle	R	u(B)	Azimuth	R	u(B)	Azimuth
(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle	(deg.)	$(\mu V/W/m^2)$	± (%)	Angle	(µV/W/m²)	± (%)	Angle
0	N/A	N/A	N/A	N/A	N/A	N/A	46	7.9342	0.38	113.84	7.8977	0.36	246.92
2	N/A	N/A	N/A	N/A	N/A	N/A	48	7.9177	0.37	111.23	7.8853	0.32	249.24
4	N/A	N/A	N/A	N/A	N/A	N/A	50	7.8960	0.38	109.04	7.8924	0.34	251.42
6	N/A	N/A	N/A	N/A	N/A	N/A	52	7.8989	0.35	106.91	7.8806	0.35	253.49
8	N/A	N/A	N/A	N/A	N/A	N/A	54	7.8947	0.33	104.90	7.8771	0.36	255.44
10	N/A	N/A	N/A	N/A	N/A	N/A	56	7.8762	0.37	103.07	7.8705	0.34	257.32
12	N/A	N/A	N/A	N/A	N/A	N/A	58	7.8890	0.38	101.23	7.8612	0.35	259.13
14	N/A	N/A	N/A	N/A	N/A	N/A	60	7.8713	0.42	99.50	7.8512	0.36	260.82
16	N/A	N/A	N/A	N/A	N/A	N/A	62	7.8557	0.43	97.87	7.8515	0.38	262.46
18	N/A	N/A	N/A	N/A	N/A	N/A	64	7.8444	0.47	96.17	7.8396	0.39	264.07
20	N/A	N/A	N/A	N/A	N/A	N/A	66	7.8576	0.41	94.62	7.8193	0.41	265.67
22	N/A	N/A	N/A	N/A	N/A	N/A	68	7.8384	N/A	93.08	7.8139	N/A	267.20
24	N/A	N/A	N/A	N/A	N/A	N/A	70	7.8355	N/A	91.58	7.7975	N/A	268.74
26	7.9609	0.32	173.50	7.9669	0.33	186.71	72	7.7851	N/A	90.07	7.7697	N/A	270.24
28	7.9609	0.30	153.71	7.9533	0.32	206.00	74	7.7016	N/A	88.71	7.7441	N/A	271.64
30	7.9556	0.31	144.83	7.9487	0.33	215.02	76	N/A	N/A	N/A	N/A	N/A	N/A
32	7.9454	0.30	138.24	7.9485	0.30	221.72	78	N/A	N/A	N/A	N/A	N/A	N/A
34	7.9495	0.30	132.90	7.9571	0.34	226.90	80	N/A	N/A	N/A	N/A	N/A	N/A
36	7.9492	0.32	128.57	7.9303	0.32	231.37	82	N/A	N/A	N/A	N/A	N/A	N/A
38	7.9494	0.35	125.33	7.9318	0.32	235.11	84	N/A	N/A	N/A	N/A	N/A	N/A
40	7.9454	0.35	121.67	7.9347	0.32	238.50	86	N/A	N/A	N/A	N/A	N/A	N/A
42	7.9422	0.33	118.61	7.9281	0.35	241.55	88	N/A	N/A	N/A	N/A	N/A	N/A
44	7.9233	0.39	116.20	7.9162	0.35	244.37	90	N/A	N/A	N/A	N/A	N/A	N/A

N/A - Not Available

[1]

Figure 4. Residuals from Spline Interpolation

Table 3. Uncertainty using Spline Interpolation ‡

Type-B Standard Uncertainty, u(B) (%)	±0.47
Type-A Interpolating Function, u(int) (%)	±0.25
Combined Standard Uncertainty, $u(c)$ (%)	±0.53
Effective degrees of freedom, DF(c)	17032
Coverage factor, k	1.96
Expanded Uncertainty, U95 (%)	±1.0
AM Valid zenith angle range	26° to 66°
PM Valid zenith angle range	26° to 66°

 \ddagger An illustration for how to reduce the uncertainty in calculating the irradiance using a function rather than R@45°.

R @ 45° (µV/W/m²)	Rnet (µV/W/m²) †
7.9178	0.22000

† Rnet determination date: Estimated

Table 5. Uncertainty using R @ 45°

Type-B Expanded Uncertainty, U(B) (%)	±0.82
Offset Uncertainty, U(off) (%)	+0.50 / -0.84
Expanded Uncertainty, U (%)	+1.3 / -1.7
Effective degrees of freedom, DF	+Inf
Coverage factor, k	1.96
Valid zenith angle range	30.0° to 60.0°

References:

- [1] Reda, I.; Hickey, J.; Long, C.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, J. J.; Dutton, E. G.; Nelson, D. (2005). "Using a Blackbody to Calculate Net Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method." Journal of Atmospheric and Oceanic Technology. , 2005; pp. 1531-1540; NREL Report No. JA-560-36646. doi:10.1175/JTECH1782.1
- [2] Reda, I.; Myers, D.; Stoffel, T. (2008). "Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective." Measure. (NCSLI Journal of Measurement Science). Vol. 3(4), December 2008; pp. 58-66; NREL Report No. JA-581-4137
- [3] Reda, I.; Andreas, A. (2004). "Solar Position Algorithm for Solar Radiation Applications." Solar Energy. Vol. 76(5), 2004; pp. 577-589; NREL Report No. JA-560-35518. doi:10.1016/j.solener.2003.12.003
- [4] Stoffel, T.; Reda, I. (2009). "NREL Pyrheliometer Comparisons: 22 September 3 October 2008 (NPC-2008)." 54 pp.; NREL Report No. TP-550-45016.
- [5] Reda, I.; Stoffel, T.; Myers, D. (2003). "Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance." Solar Energy. Vol. 74, 2003; pp. 103-112; NREL Report No. JA-560-35025. doi:10.1016/S0038-092X(03)00124-5
- [6] Reda, I. (1996). Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference. 79 pp.; NREL Report No. TP-463-20619.
 [7] Reda, I.; Gröbner, J.; Stoffel, T.; Myers, D.; Forgan, B. (2008). Improvements in the Blackbody Calibration of Pyrgeometers. ARM 2008 Science Team Meeting (Poster).

Environmental and Sky Conditions for BORCAL-SW 2021-03

Calibration Facility: Southern Great Plains

Latitude: 36.605°N Longitude: 97.488°W

Elevation: 317.0 meters AMSL

Time Zone: -6.0

Reference Irradiance:

Meteorological Observations:

-		.
l able 6.	Meteorological	Observations

Observations	Mean	Min	Max
Temperature (°C)	35.26	24.31	39.12
Humidity (%)	42.72	30.14	87.29
Pressure (mBar)	N/A	N/A	N/A
Est. Aerosol Optical Depth (BB)	0.098	0.081	0.280

For other information about the calibration facility visit: <u>https://www.arm.gov/capabilities/observatories/sgp</u>

Appendix 2 BORCAL Notes

Instrument, Configuration, and Session Notes for the BORCAL

BORCAL Notes

Facility: Southern Great Plains Comments: Avg. Station Pressure and Temperature is for Tulsa, OK, which is used for the Solar Position Algorithm (SPA). 30673F3 Eppley PSP Comments: IAW radiometer and the factory calibration sheet that I have factory cali. should be 8.52 as of May 10, 1999. C. Webb 30891F3 Eppley PSP Comments: Cal factor was recorded as 8.46 instead of 8.49 as per cal sheet, dated Sept 7, 1995. 31388E6 Eppley NIP Comments: Instrument repaired June 2011. New factory cal of 7.895 assigned. Old cal 8.73. 31875E6 Eppley NIP Comments: This instrument is for TWP. 29926F3 Eppley PIR-V Comments: Ventilated PIR

30696F3 Eppley PIR Comments: Unventilated PIR

Appendix 3 Session Configuration Audit Report

Latest Session Configuration Audit Report for the BORCAL

10/27/2021 12:48

Г

BORCAL 2021-03 Session Configuration Audit Report

	BORGAL 2021	00 0033101	ooninguit					
		L	OCATION —					
Facility	Facility Abbrev.	Contact	Latitude	Longitude	Elevation (m)	Avg press (m	br) Avg temp (C) Time zone ISC
Southern Great Plains	SGP Craig W	ebb	36.605	-97.488	317.0	992.0	15.0	-6.0
	SYSTEM					ASR RAD		
	Scan Rate (sec)	(Clock ———	(Channel Junct	ion Box Ca	able Locatio	on
Cav1 / Cav2 2.0	Radiometers 30	Reset Inte	erval (m) 30	4	SR 1: PY22	693 Licor LI2	200	
Dif1 / Dif2 5.0	Meteorological 300	Warning Three	shold (s) 3	6	60	2	2	
Global Ctrl / Ref 5.0		D	elta UT1 -0.200) 4	SR 2: None			
Direct Ctrl / Ref 5.0	ASR Setup							
Test(x) / Test(x-1) 0.5	Scan Rate (s) 1	Zenith Ar	nale (dea) 0.00	3	ME			
	ASR Readings 2	Significa	ant Figures 2		Channel Junc	tion Box Ca	able Locatio	on
Delta Thresholds	Threshold 1 (Blue) 1.000	45° Offsets: -	-15.00 + 15.00	0 I	Temperature:	E0710026T	Vaisala HMP	155 T
Temp(x) - Temp(x-1)2.0	Threshold 2 (Green) 2.000	Min Loc	nal Direct 700	[2	239	AT	AT	
Hum(x) - Hum(x-1)10.0	Threshold 3 (Brown) 3.000	Will. Leg					Scale 100	Offset -40
Bar(x) - Bar(x-1)2.0	Diffuse scaling factor 1.00	Max. Lega		H	lumidity: E07	710026H Vai	sala HMP155	н
Thrm(x) - Thrm(x-1)1.0		Max. Diffuse/	Direct (%) 45.0	2	255	RH	RH	
	Miscel	llaneous					Scale 100	Offset 0
Orea Thus (hash Daw) E.0	PW: S	lope 1.23 Ir	ntercept 1.00	F	Pressure: No	ne		
Case Thm (Inst-Pyrg) 5.0	Tilt: Ze	enith 0.00	Azimuth 0.00					
	W in:	Min 150	Max 500				Scale 0	Offset 0
Enabled Port 1	Zenith Angle (Auto Mode): Star	rtup 90 Sh	nutdown 90					2
Shaded Wait (s) 85	Intervals (m): Cavity Calibr	ation 60 Or	per. Log 20		SGP Symm	etricom NTP		•
Unshaded Wait (s) 15	SPA: Atmos. Refrac	ction 0.5667	Delta T 69.384	ŀ	Type Po RS232 1	ort Baud 9600	Parity Stop 0 1	o bits Data bits 8

		Logger/Re	əlay		DMM					Commun	ications			
Unit 0	2009-1206	S NREL RAP-DA	NQ.	MY420028	63 Agilent 3442	0A		Unit	Туре	Addr.	Board	Parity	Stop	Data
Unit 1	2009-1207	V NREL RAP-DA	NQ.	MY420028	64 Agilent 3442	0A	DMM	0	GPIB	21	0	0	0	0
Unit 2	2009-1208	NREL RAP-DA	NQ.	MY420028	66 Agilent 3442	0A	Relay	0	GPIB	24	1	0	0	0
Unit 3	2014-1302	2 NREL RAP-DA	NQ.	SG420005	96 Agilent 3442	0A	DMM	1	GPIB	22	0	0	0	0
							Relay	1	GPIB	25	1	0	0	0
		Cal Data	Unit 0	Unit 1	Unit 2	Unit 3	DMM	2	GPIB	23	0	0	0	0
		Cal Due Date	04/26/2021	04/26/2021	04/26/2021	04/20/2021	Relay	2	GPIB	26	1	0	0	0
Custom	Offeeter		0 92	0 92	0 92	0.92	DMM	3	GPIB	1	0	0	0	0
System	2-Wire	Res (mOhms)	2680.00	2680.00	2680.00	2680.00	Relay	3	GPIB	4	1	0	0	0
	4-Wire	Res. (mOhms)	0.00	0.00	0.00	0.00		. <u> </u>			1			

		CAVIT	IES, CONTROL UNITS	, AND [DIGITAL I		IETERS				
	Cavity 1	Cavity 2			I	Unit 1				Unit 2	
Unwindowed WRF	1.000000	1.000000	Cavity Head	29222 E	Eppley HF			304	195 Eppley	HF	
Windowed WRF	ז 1.057560	1.057970	Control Unit	US3703	37985 NRE	EL Reda		MY	′58006669	NREL Red	da
Unwindowed Uncert (%)	0.00	0.00	Digital Multi Meter	US3703	37985 Hev	vlett Pack	ard 34970	A MY	58006669	Hewlett P	ackard 34970A
Windowed Uncert (%)	0.38	0.39	- Cavity Location	T2-A				T5			
Heater Resistance	153.90	154.40									
Heater Lead Resistance	0.0660	0.0660				Con	trol Unit 1	Contro	ol Unit 2		
Mfg Calibration Facto	r 1.99980	1.99990			Current SI	nunt 1.00	00	1.000			
Default Sensitivity	y 0.01041	0.01050			Circuit Re	esist 3.70	00	2.600			
Cal Date	e 09/23/2019	09/23/2019		Cal Date 08/19/2020				/2020			
Cal Due Date	09/23/2021	09/23/2021			Cal Due D	Date 08/	19/2021	08/19	/2021		
	TP-solar 0	0					Commun	ications			
Calibration Waite	P-heated 45	45			Туре	Port	Bd.	Parity	Stop bits	Data bits	
(Seconds)	TP-zero 60	60	Control	Unit 1	GPIB	10	0	0	0	0	
	Dwell 15	15	[DMM 1		0	0	0	0	0	
	Active V		Control	Unit 2	GPIB	9	0	0	0	0	
Win	dow in Use 🗸		[DMM 2		0	0	0	0	0	

BORCAL 2021-03 Session Configuration Audit Report

Southern Great Plains

BORCAL 2021-03 Session Configuration Audit Report

10/27/2021 12:48		BOI	RCAL 20)21-03 S∉	ession	Confi	guration	n Aud	it Repo	ort				
					E REFE	RENCE	INSTRUM	ENTS						
		5	Shading Dis	sk	Unce	rtainty								
Responsivity Cal Date C	al Due Date	Diameter (cm)	Arm Length (cm)	Subtended Angle	Percent	Offset (W/m ²)	Max Out (mV)	Chanr	nel JBox	¢ C	able	Location	Tilt	Active
Diffuse 1: 2551 Hukseflux	SR25-T2	6.2	0.0	E 1	1 20	0.0	50	176				ТЭ		
10.132 07/01/2020 07	//01/2022	0.2	70.0	J. I	1.30	0.0	50	170	- 1-	13		13		
Diffuse 1: Case NONE Temp	perature							n/a	n/a	n/a]		
Diffuse 1: Dome NONE Tem	perature							n/a	n/a	n/a				
Diffuse 2: 2552 Hukseflux	SR25-T2													
8.225 07/01/2020 07	7/01/2022	6.2	70.0	5.1	1.20	0.0	50	177		T4		T4		
Diffuse 2: Case NONE Temp	perature							n/a	n/a	n/a]		
Diffuse 2: Dome NONE Tem	perature							n/a	n/a	n/a]		
			Colibration				ncert Ma	v Out						
Cal Date Cal Due Date	K0	K1	K2	K3	ь К	r (W	/m^2) (r	nV) (Channel	J Box	Ca	ble Location		Active
Pyrgeometer 1: 30696F3	Eppley PIR					,	, (,						
02/19/2020 02/19/2022	-0.10000	0.23590	0.99130	-4.32000	7.0440	0E-4 3	00 9	2	208		30	30		
Pyraeometer 1: Case 10K Te	emperature							2	216		30			
Pyrgeometer 1: Dome 10K T	emperature							2	24		30			
Pyrgeometer 2: 29926F3		-V (Ventila	ated)	4 65000	7 0440		40 0		22		00	02		
02/19/2020 02/19/2022	-0.90000	0.28308	1.00190	-4.05000	7.0440	0E-4 Z	40 9		.32		83	83		
Pyrgeometer 2: Case 10K Te	emperature							2	240		83			
Pyrgeometer 2: Dome 10K T	emperature							2	248		83			

BORCAL 2021-03 Session Configuration Audit Report

Group	Calib. Type	Out (mV)	Instrument Type	Instrument Grouping Type	Correcting Pyrgeometer	Count
1	Global	50	Eppley 8-48	Eppley 8-48	none	10
2	Direct	50	Eppley NIP	Eppley NIP	none	10
3	Direct	50	Eppley NIP	Eppley NIP	none	4
			Eppley sNIP			2
4	Direct	20	Kipp & Zonen CHP1	Kipp & Zonen CHP1	none	1
5	Global	50	Eppley PSP	Eppley PSP	29926F3 Eppley PIR-V	10
6	Global	50	Eppley PSP	Eppley PSP	29926F3 Eppley PIR-V	10
7	Global	50	Eppley PSP	Eppley PSP	29926F3 Eppley PIR-V	6
			Eppley SPP			2
8	Global	50	Kipp & Zonen CMP22	Kipp & Zonen CM22	29926F3 Eppley PIR-V	2
9	Global	50	Eppley PSP	Eppley PSP	30696F3 Eppley PIR	10
10	Global	50	Eppley PSP	Eppley PSP	30696F3 Eppley PIR	4
Total						71

INSTRUMENT GROUPS

10/27/2021 12:48

BORCAL 2021-03 Session Configuration Audit Report

INSTRUMENTS													
Serial Number	Model	Customer	Grp	ldx	Ch	Box	Cbl	ISO	AIM	Vent	Use	Location	Due
200695 ©	CMP22	SGP	8	2	128		57	No	Yes	Yes	тот	57	12
		(Case 10K Temperature)			136								
200710 ©	CMP22	SGP	8	1	114		56	No	Yes	Yes	тот	56	12
		(Case 10K Temperature)			122								
200803	CHP1	SGP	4	1	214		T11	No	Yes	No	DIR	T11	12
27973F3 ©	PSP	TWP	9	1	96		31	No	Yes	No	TOT	31	12
29554E6	NIP	SGP	2	1	236		T17	No	Yes	No	DIR	T17	12
29619F3 ©	PSP	SGP	5	1	126		49	No	Yes	Yes	TOT	49	12
29743E6	NIP	SGP	2	2	245		T26	No	Yes	No	DIR	T26	12
29856E6	NIP	SGP	2	3	205		T23	No	Yes	No	DIR	T23	12
29869E6	NIP	TWP	2	4	229		T8	No	Yes	No	DIR	Т8	12
29913F3 ©	PSP	TWP	9	2	1		5	No	Yes	No	тот	5	12
29915F3 ©	PSP	TWP	5	2	110		38	No	Yes	Yes	тот	38	12
29934E6	NIP	TWP	2	5	212		Т9	No	Yes	No	DIR	Т9	12
29938E6	NIP	SGP	2	6	242		T29	No	Yes	No	DIR	T29	12
30617F3 ©	PSP	SGP	5	3	133		51	No	Yes	Yes	тот	51	12
30653F3 ©	PSP	SGP	5	4	158		75	No	Yes	Yes	тот	75	12
30665F3 ©	PSP	SGP	5	5	161		84	No	Yes	Yes	тот	84	12
30673F3 ©	PSP	SGP	9	3	61		3	No	Yes	No	тот	3	12
30709F3 ©	PSP	SGP	5	6	164		76	No	Yes	Yes	тот	76	12
30717E6	NIP	SGP	2	7	234		T20	No	Yes	No	DIR	T20	12
30718E6	NIP	SGP	2	8	226		T15	No	Yes	No	DIR	T15	12
30722E6	NIP	SGP	2	9	237		T24	No	Yes	No	DIR	T24	12
30776F3 ©	PSP	SGP	5	7	141		59	No	Yes	Yes	TOT	59	12
30820F3 ©	PSP	SGP	5	8	129		58	No	Yes	Yes	тот	58	12
30891F3 ©	PSP	SGP	5	9	174		86	No	Yes	Yes	тот	86	12
30900F3 ©	PSP	SGP	9	4	64		12	No	Yes	No	тот	12	12
30951F3 ©	PSP	SGP	9	5	20		34	No	Yes	No	тот	34	12
30953F3 ©	PSP	SGP	9	6	0		4	No	Yes	No	тот	4	12
31096F3 ©	PSP	SGP	5	10	162		85	No	Yes	Yes	тот	85	12
31099F3 ‡©	PSP	Calibration System	6	1	130		64	No	Yes	Yes	тот	64	12
		(Case 10K Temperature)			138		64						
31100F3 ‡©	PSP	Calibration System	6	2	145		73	No	Yes	Yes	TOT	73	12
		(Case 10K Temperature)			153		73						
31101F3 ‡©	PSP	Calibration System	6	3	160		82	No	Yes	Yes	TOT	82	12
		(Case 10K Temperature)			168		82						
31120E6 ‡	NIP	Calibration System	2	10	210		T32	No	Yes	No	DIR	T32	12
31122E6 ‡	NIP	Calibration System	3	1	230		T16	No	Yes	No	DIR	T16	12
31149F3 ‡©	PSP	Calibration System	6	4	98		37	No	Yes	Yes	тот	37	12
		(Case 10K Temperature)			106		37						
31150F3 ‡©	PSP	Calibration System	6	5	112		46	No	Yes	Yes	тот	46	12
		(Case 10K Temperature)			120		46						
31151F3 ‡©	PSP	Calibration System	6	6	113		55	No	Yes	Yes	тот	55	12
		(Case 10K Temperature)			121		55						
31152F3 ‡©	PSP	Calibration System	9	7	80		19	No	Yes	No	тот	19	12
		(Case 10K Temperature)			88		19						
31153F3 ‡©	PSP	Calibration System	9	8	81		28	No	Yes	No	TOT	28	12
		(Case 10K Temperature)			89		28						
31154F3 ‡©	PSP	Calibration System	9	9	82		29	No	Yes	No	TOT	29	12
		(Case 10K Temperature)			90		29						

‡ Control Instrument

© Effective Net IR Corrected Instrument

BORCAL 2021-03 Session Configuration Audit Report

			INSTR	UMEN	NTS								
Serial Number	Model	Customer	Grp	ldx	Ch	Box	Cbl	ISO	AIM	Vent	Use	Location	Due
31158F3 ‡©	PSP	Calibration System	9	10	48		1	No	Yes	No	тот	1	12
		(Case 10K Temperature)			56		1						
31159F3 ‡©	PSP	Calibration System	10	1	49		10	No	Yes	No	тот	10	12
		(Case 10K Temperature)			57		10						
31160F3 ‡©	PSP	Calibration System	10	2	50		11	No	Yes	No	тот	11	12
		(Case 10K Temperature)			58		11						
31277F3 ©	PSP	TWP	6	7	108		39	No	Yes	Yes	тот	39	12
31283F3 ©	PSP	TWP	6	8	156		66	No	Yes	Yes	тот	66	12
31284F3 ©	PSP	TWP	10	3	92		20	No	Yes	No	тот	20	12
31289F3 ©	PSP	TWP	6	9	144		65	No	Yes	Yes	тот	65	12
31291F3 ©	PSP	TWP	10	4	93		21	No	Yes	No	тот	21	12
31294F3 ©	PSP	NSA	6	10	149		67	No	Yes	Yes	тот	67	12
31388E6	NIP	SGP	-	-	244		T18	No	Yes	No	DIR	T18	12
31636F3 ©	PSP	SGP	7	1	146		74	No	Yes	Yes	тот	74	12
31763E6	NIP	NSA	3	2	249		T30	No	Yes	No	DIR	Т30	12
31875E6	NIP	TWP	3	3	213		T10	No	Yes	No	DIR	T10	12
32026F3 ©	PSP	NSA	7	2	150		68	No	Yes	Yes	тот	68	12
32882	8-48	TWP	1	1	38		81	No	Yes	Yes	тот	81	12
33247	8-48	SGP	1	2	28		70	No	Yes	Yes	тот	70	12
33251	8-48	TWP	1	3	24		43	No	Yes	Yes	тот	43	12
33262	8-48	SGP	1	4	32		52	No	Yes	Yes	тот	52	12
33267	8-48	SGP	1	5	45		89	No	Yes	Yes	тот	89	12
33273	8-48	SGP	1	6	44		88	No	Yes	Yes	тот	88	12
33279	8-48	SGP	1	7	29		71	No	Yes	Yes	тот	71	12
33386	8-48	TWP	1	8	26		45	No	Yes	Yes	тот	45	12
34281	8-48	TWP	1	9	37		80	No	Yes	Yes	тот	80	12
35830F3 ©	PSP	AMF#2	7	3	157		69	No	Yes	Yes	тот	69	12
35864	8-48	SGP	1	10	34		54	No	Yes	Yes	тот	54	12
36291F3 ©	PSP	AMF#2	7	4	124		47	No	Yes	Yes	тот	47	12
37286E6	NIP	AMF	3	4	225		T7	No	Yes	No	DIR	Τ7	12
37297F3 ©	PSP	AMF	7	5	116		40	No	Yes	Yes	тот	40	12
37300F3 ©	PSP	NSA	7	6	125		48	No	Yes	Yes	тот	48	12
37945E6	sNIP	SGP	3	5	178		T12	No	Yes	No	DIR	T12	12
37946E6	sNIP	SGP	3	6	209		T28	No	Yes	No	DIR	T28	12
38909F3 ©	SPP	SGP	7	7	165		77	No	Yes	Yes	тот	77	12
38910F3 ©	SPP	SGP	7	8	166		78	No	Yes	Yes	тот	78	12

‡ Control Instrument

© Effective Net IR Corrected Instrument

BORCAL 2021-03 Session Configuration Audit Report

Effective Net IR Corrected Instruments

Instrument	Vent	Correcting Pyrgeometer	Inst. RSnet	RSnet uncert.	RSnet Date
200695 Kipp & Zonen CMP22	Yes	29926F3 Eppley PIR-V	0.0870	20.0000	Estimated
200710 Kipp & Zonen CMP22	Yes	29926F3 Eppley PIR-V	0.0870	20.0000	Estimated
27973F3 Eppley PSP	No	30696F3 Eppley PIR	0.6000	20.0000	Estimated
29619F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.6905	10.0000	04/24/2007
29913F3 Eppley PSP	No	30696F3 Eppley PIR	0.5390	10.0000	03/31/2006
29915F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.6327	10.0000	06/09/2006
30617F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.6703	10.0000	04/24/2007
30653F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.6100	10.0000	04/18/2006
30665F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.6820	10.0000	04/26/2007
30673F3 Eppley PSP	No	30696F3 Eppley PIR	0.5741	10.0000	04/26/2007
30709F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.6150	10.0000	06/07/2006
30776F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.6486	10.0000	04/24/2007
30820F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.6350	10.0000	05/09/2007
30891F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.5755	10.0000	06/08/2006
30900F3 Eppley PSP	No	30696F3 Eppley PIR	0.6338	10.0000	05/08/2007
30951F3 Eppley PSP	No	30696F3 Eppley PIR	0.6427	10.0000	07/06/2006
30953F3 Eppley PSP	No	30696F3 Eppley PIR	0.6708	10.0000	05/08/2007
31096F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.7148	10.0000	05/08/2007
31099F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.5787	10.0000	05/08/2006
31100F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.6473	10.0000	05/09/2006
31101F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.6483	10.0000	05/09/2006
31149F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.5490	10.0000	03/30/2006
31150F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.5510	10.0000	03/30/2006
31151F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.5330	10.0000	03/30/2006
31152F3 Eppley PSP	No	30696F3 Eppley PIR	0.6339	10.0000	05/09/2006
31153F3 Eppley PSP	No	30696F3 Eppley PIR	0.6429	10.0000	05/09/2006
31154F3 Eppley PSP	No	30696F3 Eppley PIR	0.5616	10.0000	05/09/2006
31158F3 Eppley PSP	No	30696F3 Eppley PIR	0.5240	10.0000	03/30/2006
31159F3 Eppley PSP	No	30696F3 Eppley PIR	0.5320	10.0000	03/30/2006
31160F3 Eppley PSP	No	30696F3 Eppley PIR	0.4900	10.0000	03/30/2006
31277F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.5040	10.0000	04/03/2006
31283F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.6017	10.0000	04/26/2007
31284F3 Eppley PSP	No	30696F3 Eppley PIR	0.5460	10.0000	03/31/2006
31289F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.6523	10.0000	05/08/2007
31291F3 Eppley PSP	No	30696F3 Eppley PIR	0.6184	10.0000	04/26/2007
31294F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.5470	10.0000	04/03/2006
31636F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.6211	10.0000	06/06/2006
32026F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.6242	10.0000	06/13/2006
35830F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.5471	10.0000	08/05/2009
36291F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.6000	20.0000	Estimated
37297F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.6000	20.0000	Estimated
37300F3 Eppley PSP	Yes	29926F3 Eppley PIR-V	0.6000	20.0000	Estimated
38909F3 Eppley SPP	Yes	29926F3 Eppley PIR-V	0.2200	20.0000	Estimated
38910F3 Eppley SPP	Yes	29926F3 Eppley PIR-V	0.2200	20.0000	Estimated

Appendix 4 Operator Session Logs

Operator session logs for the BORCAL

Session: 1							
Date 07-22-2021	Start Time 07:24:22	End Time 08:24:23	Cavity S/N 29222 30495	Setup 06:45 06:45	M (beg) 970.8 956.0	M (end) 970.2 955.8	
Observations	:						
 Time 07:44:54	Zenith 64.68	ASR Blue	Direct 421.5	% Diffuse 44.8	Operator Craig Webb		
Comments: first run fo mph.	r 2021-03 signa	l is low but ev	verything looks o	good, temp 26C,	hum 68%, hpa 98	33, wnd dir 1	20@
Session: 2							
Date 07-22-2021	Start Time 08:24:23	End Time 09:16:26	Cavity S/N 29222 30495	Setup 06:45 06:45	M (beg) 970.2 955.8	M (end) 969.6 955.5	
Observations	:						
Time 08:42:21	Zenith 53.20	ASR Blue	Direct 533.5	% Diffuse 37.9	Operator Craig Webb		
Comments: hazy low sig	nal, temp 29C, 1	hum 57%, hpa 98	33, wnd dir 140 (0 11 mph.			
Time 08:46:54	Zenith 52.28	ASR Blue	Direct 541.3	% Diffuse 37.2	Operator Craig Webb		
Comments: [N	one]						
Session: 3							
Date 07-22-2021	Start Time 09:16:26	End Time 10:16:26	Cavity S/N 29222 30495	Setup 06:45 06:45	M (beg) 969.6 955.5	M (end) 968.8 955.0	
Observations	:						
 Time 09:26:35	Zenith 44.38	ASR Blue	Direct 604.4	% Diffuse 33.4	Operator Craig Webb		
Comments: hazy sky, te	mp 30Cmhum 51%,	hpa 983, wnd d	dir 138 @ 14 mph				
Time 09:48:08	Zenith 40.11	ASR Blue	Direct 625.1	% Diffuse 32.2	Operator Craig Webb		
Comments: no change.							
Time 10:08:45	Zenith 36.12	ASR Blue	Direct 649.1	% Diffuse 30.9	Operator Craig Webb		
Comments: temp 31C, hu	m 49%, hpa 983,	wnd dir 135 @	16 mph, hazy				
Session: 4							
Date 07-22-2021	Start Time 10:16:26	End Time 11:14:30	Cavity S/N 29222 30495	Setup 06:45 06:45	M (beg) 968.8 955.0	M (end) 969.1 954.9	

Observations:						
Time 10:27:40	Zenith 32.53	ASR Blue	Direct 651.4	% Diffuse 31.3	Operator Craig Webb	
Comments: clouds moving	into the area	, temp 31C, hur	n 50%, hpa 983, t	wnd dir 140 @ 1	3 mph.	
Time 10:48:54	Zenith 28.65	ASR Green	Direct 677.2	% Diffuse 33.2	Operator Craig Webb	
Comments: shutting down	due to clouds	in the area. t	cemp 31C, hum 50 ^s	%, hpa 982, wnd	dir 135 @ 6 mpl	·
Session: 5						
Date 07-22-2021	Start Time 11:14:30	End Time 12:09:38	Cavity S/N 29222 30495	Setup 06:45 06:45	M (beg) 969.1 954.9	M (end) 968.2 954.4
Observations:						
Time 11:45:13	Zenith 19.93	ASR Blue	Direct 655.6	% Diffuse 37.2	Operator Craig Webb	
Comments: lots of cloud	s					
Time 12:06:23	Zenith 17.74	ASR Green	Direct 666.8	% Diffuse 33.4	Operator Craig Webb	
Comments: shutting down	to install 2	spp				
Session: 6						
Date 07-22-2021	Start Time 12:28:16	End Time 13:25:21	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 968.0 953.8	M (end) 967.7 954.1
Observations:	[None]					
Session: 7						
Date 07-22-2021	Start Time 13:25:21	End Time 14:25:23	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 967.7 954.1	M (end) 967.0 953.9
Observations:	[None]					
Session: 8	=============					
Date 07-22-2021	Start Time 14:25:23	End Time 15:22:25	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 967.0 953.9	M (end) 967.9 953.7
Observations:	[None]					
Session: 9						
Date 07-22-2021	Start Time 15:22:25	End Time 16:22:27	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 967.9 953.7	M (end) 967.0 953.1
Observations:	[None]					

Session: 10						
Date 07-22-2021	Start Time 16:22:27	End Time 17:22:28	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 967.0 953.1	M (end) 967.3 953.7
Observations:	[None]					
======================================						
Date 07-22-2021	Start Time 17:22:28	End Time 18:22:33	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 967.3 953.7	M (end) 967.1 954.0
Observations:	[None]					
======================================						
Date 07-22-2021	Start Time 18:22:33	End Time 19:23:34	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 967.1 954.0	M (end) 968.5 954.6
Observations:	[None]					
======================================						
Date 07-22-2021	Start Time 19:23:34	End Time 19:45:10	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 968.5 954.6	M (end) 969.0 954.9
Observations:	[None]					
======================================						
Date 07-23-2021	Start Time 05:33:39	End Time 06:33:42	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 971.8 957.2	M (end) 971.6 957.0
Observations:	[None]					
Session: 15						
Date 07-23-2021	Start Time 06:33:42	End Time 07:33:45	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 971.6 957.0	M (end) 970.6 956.4
Observations:						
Time 07:23:28	Zenith 69.05	ASR Blue	Direct 547.5	% Diffuse 30.8	Operator RCC	
Comments: 31184F3 see n	no bugs or anyt	hing causing s	gnal variance			
Session: 16						
Date 07-23-2021	Start Time 07:33:45	End Time 08:33:47	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 970.6 956.4	M (end) 969.3 955.8
Observations:	[None]					
======================================						
Date 07-23-2021	Start Time 08:33:47	End Time 09:33:50	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 969.3 955.8	M (end) 968.8 955.1

Observations:	[None]					
Session: 18						
Date 07-23-2021	Start Time 09:33:50	End Time 10:34:51	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 968.8 955.1	M (end) 968.0 954.2
Observations:	[None]					
======================================						
Date 07-23-2021	Start Time 10:34:51	End Time 11:16:15	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 968.0 954.2	M (end) 967.7 954.0
Observations:	[None]					
======================================						
Date 07-23-2021	Start Time 11:16:15	End Time 12:16:18	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 967.7 954.0	M (end) 967.4 953.7
Observations:						
Time 12:07:18	Zenith 17.87	ASR Blue	Direct 816.0	% Diffuse 22.1	Operator RCC	
Comments: clouds moving	into area and	d farmer burning a	a wheat field	southeast of s	siteabout three m	iles away.
Session: 21						
Date 07-23-2021	Start Time 12:16:18	End Time 13:16:19	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 967.4 953.7	M (end) 966.1 953.0
Observations:	[None]					
Session: 22						
Date 07-23-2021	Start Time 13:16:19	End Time 14:16:21	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 966.1 953.0	M (end) 967.2 953.6
Dbservations:	[None]					
Session: 23						
Date 07-23-2021	Start Time 14:16:21	End Time 15:17:22	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 967.2 953.6	M (end) 966.6 953.0
Observations:	[None]					
Session: 24						
Date 07-23-2021	Start Time 15:17:22	End Time 16:18:24	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 966.6 953.0	M (end) 966.2 953.0
Observations:	[None]					
Session: 25						
Date 07-23-2021	Start Time 16:18:24	End Time 17:18:26	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 966.2 953.0	M (end) 966.2 952.7

Observations:	[None]					
Session: 26						
Date 07-23-2021	Start Time 17:18:26	End Time 18:19:27	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 966.2 952.7	M (end) 966.3 952.6
Observations:	[None]					
======================================						
Date 07-23-2021	Start Time 18:19:27	End Time 19:22:29	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 966.3 952.6	M (end) 968.3 953.8
Observations:	[None]					
Session: 28						
Date 07-23-2021	Start Time 19:22:29	End Time 19:44:27	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 968.3 953.8	M (end) 968.4 954.3
Observations:	[None]					
Session: 29						
Date 07-24-2021	Start Time 05:34:26	End Time 06:34:30	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 971.6 956.5	M (end) 971.0 956.9
Observations:						
Fime D6:04:05	Zenith 84.41	ASR Blue	Direct 112.2	% Diffuse 80.3	Operator RCC	
Comments: [Nc	one]					
Session: 30						
Date 07-24-2021	Start Time 06:34:30	End Time 07:34:31	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 971.0 956.9	M (end) 969.9 955.7
Dbservations:	[None]					
Session: 31						
Date 07-24-2021	Start Time 07:34:31	End Time 08:34:32	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 969.9 955.7	M (end) 969.1 955.0
Dbservations:	[None]					
======================================						
Date 07-24-2021	Start Time 08:34:32	End Time 09:34:34	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 969.1 955.0	M (end) 968.5 954.8
Dbservations:	[None]					
Session: 33						
Date 07-24-2021	Start Time 09:34:34	End Time 10:35:34	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 968.5 954.8	M (end) 967.4 954.0

Observations:	[None]					
Session: 34						
Date 07-24-2021	Start Time 10:35:34	End Time 11:36:37	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 967.4 954.0	M (end) 966.9 953.5
Observations:	[None]					
Session: 35						
Date 07-24-2021	Start Time 11:36:37	End Time 12:36:40	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 966.9 953.5	M (end) 966.9 953.3
Observations:	[None]					
Session: 36						
Date 07-24-2021	Start Time 12:36:40	End Time 13:36:41	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 966.9 953.3	M (end) 966.7 953.1
Observations:						
Time 12:49:39	Zenith 17.15	ASR Blue	Direct 750.6	% Diffuse 21.8	Operator RCC	
Comments: [No	ne]					
Session: 37						
Date 07-24-2021	Start Time 13:36:41	End Time 14:36:41	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 966.7 953.1	M (end) 966.0 952.0
Observations:	[None]					
Session: 38						
Date 07-24-2021	Start Time 14:36:41	End Time 15:37:43	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 966.0 952.0	M (end) 965.9 952.1
Observations:	[None]					
Session: 39						
Date 07-24-2021	Start Time 15:37:43	End Time 16:37:45	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 965.9 952.1	M (end) 966.7 953.1
Observations:						
Time 15:45:33	Zenith 44.44	ASR Blue	Direct 641.4	% Diffuse 30.3	Operator RCC	
Comments: [No	ne]					
Session: 40						
Date 07-24-2021	Start Time 16:37:45	End Time 17:31:57	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 966.7 953.1	M (end) 967.5 952.9

Observations:	:					
Time 17:28:56	Zenith 65.10	ASR Red	Direct -0.5	% Diffuse 100.5	Operator RCC	-
Comments: raining shuti	ing down.					-
Session: 41						
Date 07-25-2021	Start Time 05:35:11	End Time 06:35:12	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 0.0 0.0	M (end) -0.0 0.0
Observations:	: [None]					
======================================						
Date 07-25-2021	Start Time 06:35:12	End Time 07:35:14	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) -0.0 0.0	M (end) 0.0 0.0
Observations:	: [None]					
Session: 43						
Date 07-25-2021	Start Time 07:35:14	End Time 08:31:21	Cavity S/N 29222 30495	Setup 0:00 0:00	M (beg) 0.0 0.0	M (end) 0.0 0.0
Observations:	[None]					
Session: 44						
Date 07-27-2021	Start Time 11:08:25	End Time 12:08:28	Cavity S/N 29222 30495	Setup 10:45 10:45	M (beg) 970.2 956.3	M (end) 968.2 954.6
Observations:	:					
Time 11:34:02	Zenith 22.27	ASR Blue	Direct 843.2	% Diffuse 14.0	Operator Craig Webb	-
Comments: shy was clear	r so started BOF	RCAL, temp 35C,	hum 61%, hpa 97	79, wnd dir 070	@ 2 mph.	-
Time 12:07:36	Zenith 18.81	ASR Blue	Direct 849.7	% Diffuse 14.4	Operator Craig Webb	_
Comments: small clouds	starting to for	rm to the south	and noryh. ten	np34C, hum 57%,	hpa 979, wnd dir	
Session: 45						
Date 07-27-2021	Start Time 12:08:28	End Time 13:00:47	Cavity S/N 29222 30495	Setup 10:45 10:45	M (beg) 968.2 954.6	M (end) 967.6 953.7
Observations:	:					
Time 12:08:29	Zenith 18.81	ASR Blue	Direct 849.7	% Diffuse 14.4	Operator Craig Webb	-
Comments: clouds starti	ing to form to t	the south and n	orth, temp 34C,	hum 56%, hpa 9	79, wnd dir 080 @	2 mph.
Time 12:48:08	Zenith 17.76	ASR Red	Direct 808.8	% Diffuse 19.0	Operator Craig Webb	-

Time						
12:57:31	Zenith 18.17	ASR Red	Direct 637.9	% Diffuse 25.3	Operator Craig Webb	
Comments: quiting due t	to clouds,					
Session: 46						
Date)7-28-2021	Start Time 07:14:07	End Time 08:16:09	Cavity S/N 29222 30495	Setup 06:45 06:45	M (beg) 970.6 956.4	M (end) 969.9 955.8
Dbservations:	:					
Fime 07:42:39	Zenith 65.82	ASR Blue	Direct 509.1	% Diffuse 35.4	Operator Craig Webb	
Comments: SOME CLOUDS &	AND LOW OUTPUT,	TEMP 28c,HUM 8	34%, HPA 981, WNI	D DIR 070 @ 3 M	РН.	
Session: 47						
Date)7-28-2021	Start Time 08:16:09	End Time 09:16:08	Cavity S/N 29222 30495	Setup 06:45 06:45	M (beg) 969.9 955.8	M (end) 968.6 954.8
Dbservations:	:					
 Fime 08:19:21	Zenith 58.49	ASR Blue	Direct 600.8	% Diffuse 29.3	Operator Craig Webb	
Comments: nazy, temp 31	lC, hum 73%, hp	a 981, wnd dir	090 @ 8 mph			
Fime 08:42:42	Zenith 53.81	ASR Green	Direct 641.2	% Diffuse 27.2	Operator Craig Webb	
Comments: no change						
Session: 48						
Session: 48 Date)7-28-2021	Start Time 09:16:08	End Time 10:18:10	Cavity S/N 29222 30495	Setup 06:45 06:45	M (beg) 968.6 954.8	M (end) 967.8 954.0
Session: 48 Date 07-28-2021 Dbservations:	Start Time 09:16:08	End Time 10:18:10	Cavity S/N 29222 30495	Setup 06:45 06:45	M (beg) 968.6 954.8	M (end) 967.8 954.0
Session: 48 Date 07-28-2021 Dbservations: Fime 09:17:03	Start Time 09:16:08 Zenith 46.97	End Time 10:18:10 ASR Brown	Cavity S/N 29222 30495 Direct 695.9	Setup 06:45 06:45 % Diffuse 23.7	M (beg) 968.6 954.8 Operator Craig Webb	M (end) 967.8 954.0
Session: 48 Date 07-28-2021 Observations: Fime 09:17:03 Comments: clear, temp 3	Start Time 09:16:08 Zenith 46.97	End Time 10:18:10 ASR Brown pa 981, wnd dir	Cavity S/N 29222 30495 Direct 695.9	Setup 06:45 06:45 % Diffuse 23.7	M (beg) 968.6 954.8 Operator Craig Webb	M (end) 967.8 954.0
Session: 48 Date 07-28-2021 Observations: Dime 09:17:03 Comments: clear, temp 3 Fime 09:37:38	Start Time 09:16:08 Zenith 46.97 33C, hum 60%, h Zenith 42.91	End Time 10:18:10 ASR Brown pa 981, wnd dir ASR Blue	Cavity S/N 29222 30495 Direct 695.9 C 078 @ 4 mph Direct 729.2	Setup 06:45 06:45 % Diffuse 23.7 % Diffuse 22.1	M (beg) 968.6 954.8 Operator Craig Webb Operator Craig Webb	M (end) 967.8 954.0
Session: 48 Date 07-28-2021 Dbservations: Fime 09:17:03 Comments: clear, temp 3 Fime 09:37:38 Comments: 10 change	Start Time 09:16:08 Zenith 46.97 33C, hum 60%, h Zenith 42.91	End Time 10:18:10 ASR Brown pa 981, wnd dir ASR Blue	Cavity S/N 29222 30495 Direct 695.9 078 @ 4 mph Direct 729.2	Setup 06:45 06:45 % Diffuse 23.7 % Diffuse 22.1	M (beg) 968.6 954.8 Operator Craig Webb Operator Craig Webb	M (end) 967.8 954.0
Session: 48 Date 07-28-2021 Dbservations: 	Start Time 09:16:08 Zenith 46.97 33C, hum 60%, h Zenith 42.91	End Time 10:18:10 ASR Brown pa 981, wnd dir ASR Blue	Cavity S/N 29222 30495 Direct 695.9 078 @ 4 mph Direct 729.2	Setup 06:45 06:45 % Diffuse 23.7 % Diffuse 22.1	M (beg) 968.6 954.8 Operator Craig Webb Operator Craig Webb	M (end) 967.8 954.0

Observations:						
Time 10:20:58	Zenith 34.58	ASR Blue	Direct 771.1	% Diffuse 19.6	Operator Craig Webb	
Comments: clear but hazy	7, temp 34C, hu	m 53%, hpa 980), wnd dir 100 @	11 mph.		
Time 10:28:57	Zenith 33.11	ASR Blue	Direct 773.6	% Diffuse 19.6	Operator Craig Webb	
Comments: been watching	31101F3 but do	n't see anyth	ing to cause ala	rms don't see a	ny bugs or birds.	
Time 11:03:55	Zenith 26.99	ASR Green	Direct 780.7	% Diffuse 19.4	Operator Craig Webb	
Comments: no change						
Session: 50						
Date 07-28-2021	Start Time 11:18:14	End Time 12:16:14	Cavity S/N 29222 30495	Setup 06:45 06:45	M (beg) 967.0 953.6	M (end) 966.5 953.4
Observations:						
Time 11:32:02	Zenith 22.73	ASR Blue	Direct 779.2	% Diffuse 20.0	Operator Craig Webb	
Comments: clouds moving	into the area,	temp 35C, hur	n 50%, hpa 980, t	wnd dir 120 @ 1	0 mph.	
Time 11:52:13	Zenith 20.28	ASR Green	Direct 760.2	% Diffuse 21.4	Operator Craig Webb	
Comments: clouds in area	a, temp 35C, hu	m m48%, hpa 98	30, wnd dir 140 (9 mph.		
Session: 51						
Date 07-28-2021	Start Time 12:16:14	End Time 13:14:17	Cavity S/N 29222 30495	Setup 06:45 06:45	M (beg) 966.5 953.4	M (end) 966.3 953.2
Observations:						
Time 12:17:03	Zenith 18.31	ASR Red	Direct 21.2	% Diffuse 92.3	Operator Craig Webb	
Comments: clouds, temp 3	36C, hum 45%, h	pa 980, wnd di	ir 110 @ 3 mph.			
Time 12:37:22	Zenith 17.81	ASR Blue	Direct 778.5	% Diffuse 23.3	Operator Craig Webb	
Comments: no change,						
Time 12:55:52	Zenith 18.30	ASR Green	Direct 790.5	% Diffuse 25.3	Operator Craig Webb	
Comments: [Nor	ne]					

Session: 52						
Date 07-28-2021	Start Time 13:14:17	End Time 14:12:19	Cavity S/N 29222 30495	Setup 06:45 06:45	M (beg) 966.3 953.2	M (end) 966.1 953.1
Observations:	:					
 Time 13:16:08	Zenith 19.83	ASR Green	Direct 798.9	% Diffuse 21.6	Operator Craig Webb	
Comments: farmer burnir	ng wheat field	to the south of	f the RCF. temp	36C, hum 44%, h	pa 980 wnd dir	 106 @ 8 mph
Time 13:36:48	Zenith 22.20	ASR Green	Direct 670.1	% Diffuse 26.1	Operator Craig Webb	
Comments: no change in happens.	sky, temp 36C,	hum 47%, hpa 9	980, wnd dir 100	@ 5 mph. going	to let system	run to see what
Session: 53						
Date 07-28-2021	Start Time 14:12:19	End Time 15:14:21	Cavity S/N 29222 30495	Setup 06:45 06:45	M (beg) 966.1 953.1	M (end) 966.2 952.9
Observations:	:					
Time 14:19:57	Zenith 28.85	ASR Blue	Direct 788.5	% Diffuse 21.2	Operator Craig Webb	
Comments: clouds starti wnd dir 060 @	ing to disappea 8 mph.	r and sky is cl	learing. smoke i	s gone fire is	out. temp 36C,	 hum 45%, hpa 98
 Time 14:48:36	Zenith 33.97	ASR Blue	Direct 692.7	% Diffuse 22.7	Operator Craig Webb	
Comments: no change						
======================================						
Date 07-28-2021	Start Time 15:14:21	End Time 16:15:23	Cavity S/N 29222 30495	Setup 06:45 06:45	M (beg) 966.2 952.9	M (end) 966.1 952.5
Observations:	:					
Time 15:20:47	Zenith 40.09	ASR Green	Direct 767.3	% Diffuse 19.1	Operator Craig Webb	
Comments: [No	one]					
Time 15:41:22	Zenith 44.10	ASR Green	Direct 761.7	% Diffuse 19.6	Operator Craig Webb	
Comments: no change						
Time 16:01:27	Zenith 48.10	ASR Blue	Direct 726.3	% Diffuse 21.4	Operator Craig Webb	
Comments: [No	one]					

Session: 55						
Date 07-28-2021	Start Time 16:15:23	End Time 17:15:26	Cavity S/N 29222 30495	Setup 06:45 06:45	M (beg) 966.1 952.5	M (end) 966.4 952.6
Observations:						
 Time 16:21:53	Zenith 52.18	ASR Blue	Direct 677.8	% Diffuse 23.5	Operator Craig Webb	
Comments: temp 36C, hum	1 44%, hpa 978,	wnd dir 150 @	6 mph.			
Time 16:42:01	Zenith 56.22	ASR Blue	Direct 673.1	% Diffuse 23.9	Operator Craig Webb	
Comments: a few clouds	still hanging	around, temp 35	6C, hum 45%, hpa	979, wnd dir 1	35 @ 5 mph.	
Time 17:02:06	Zenith 60.24	ASR Green	Direct 634.6	% Diffuse 26.0	Operator Craig Webb	
Comments: [No	one]					
Session: 56						
Date 07-28-2021	Start Time 17:15:26	End Time 17:58:09	Cavity S/N 29222 30495	Setup 06:45 06:45	M (beg) 966.4 952.6	M (end) 966.5 952.8
Observations:						
 Time 17:22:11	Zenith 64.27	ASR Blue	Direct 603.7	% Diffuse 27.2	Operator Craig Webb	
Comments: a few small c	clouds in area,	temp 35C, hum	46%, hpa 978, wr	nd dir 160 @ 4	mph.	
Time 17:42:15	Zenith 68.26	ASR Blue	Direct 555.2	% Diffuse 30.4	Operator Craig Webb	
Comments: haze on horiz	an ,temp 35C,	hum 49%, hpa 97	78, wnd dir 132 @	9 3 mph.		
Time 17:53:35	Zenith 70.50	ASR Blue	Direct 249.5	% Diffuse 47.9	Operator Craig Webb	
Comments: [No	one]					
======================================						
Date 07-29-2021	Start Time 06:43:08	End Time 07:40:07	Cavity S/N 29222 30495	Setup 06:29 06:29	M (beg) 971.1 956.4	M (end) 969.9 956.0
Observations:						
Time 07:13:46	Zenith 71.67	ASR Blue	Direct 449.9	% Diffuse 38.5	Operator Craig Webb	
Comments: clear temp 27	'C, hum 90%, hp	a 981, wnd dir	100 @ 2 mph.			
Time 07:14:50	Zenith 71.47	ASR Blue	Direct 451.6	* Diffuse 38.3	Operator Craig Webb	
Comments: [No	one]					

Session: 58						
Date)7-29-2021	Start Time 07:40:07	End Time 08:40:10	Cavity S/N 29222 30495	Setup 06:29 06:29	M (beg) 969.9 956.0	M (end) 968.7 955.2
)bservations:						
Fime)8:03:27	Zenith 61.80	ASR Blue	Direct 589.3	% Diffuse 30.0	Operator Craig Webb	
Comments: clear 31101F3	still getting a	alarms. temp 3	31C, hum 68%, hp	a 981, wnd dir	175 @ 7 mph.	
'ime 08:35:51	Zenith 55.31	ASR Blue	Direct 646.2	% Diffuse 26.7	Operator Craig Webb	
Comments: no change						
Session: 59						
)ate)7-29-2021	Start Time 08:40:10	End Time 09:40:12	Cavity S/N 29222 30495	Setup 06:29 06:29	M (beg) 968.7 955.2	M (end) 967.9 954.4
)bservations:						
'ime)8:58:34	Zenith 50.77	ASR Blue	Direct 682.8	% Diffuse 24.8	Operator Craig Webb	
Comments: clear temp 330	C, hum 56%, hpa	981, wnd dir	160 @ 10 mph.			
Fime)9:35:05	Zenith 43.53	ASR Green	Direct 706.3	% Diffuse 23.8	Operator Craig Webb	
Comments: no change						
Session: 60						
Date)7-29-2021	Start Time 09:40:12	End Time 10:40:15	Cavity S/N 29222 30495	Setup 06:29 06:29	M (beg) 967.9 954.4	M (end) 967.0 954.0
)bservations:						
lime .0:11:00	Zenith 36.59	ASR Blue	Direct 733.5	% Diffuse 22.6	Operator Craig Webb	
Comments: clouds moving	into the area,	temp 35C, hun	n 50%, hpa 981,	wnd dir 170 @ 1	1 mph.	
Session: 61			============			
Date)7-29-2021	Start Time 10:40:15	End Time 10:48:39	Cavity S/N 29222 30495	Setup 06:29 06:29	M (beg) 967.0 954.0	M (end) 967.4 954.2
)bservations:						
Time L0:44:48	Zenith 30.40	ASR Red	Direct 131.5	* Diffuse 66.7	Operator Craig Webb	
Comments:	to shut down fo:					

Session: 62						
Date 07-31-2021	Start Time 10:50:04	End Time 11:50:07	Cavity S/N 29222 30495	Setup 10:29 10:29	M (beg) 971.1 957.2	M (end) 968.4 954.4
Observations:	:					
 Time 11:03:05	Zenith 27.63	ASR Blue	Direct 758.9	% Diffuse 20.8	Operator Craig Webb	
Comments: hazy and clou	uds starting to	form to the no	orthwest. temp	37C, hum 38%, h	pa 979, wnd dir	 160 @ 13 mph
Time 11:27:48	Zenith 23.89	ASR Blue	Direct 777.0	% Diffuse 23.4	Operator Craig Webb	
Comments: more clouds n	noving into the	area, temp 380	C, hum 27%, hpa	979, wnd dir 13	3 @ 12 mph.	
Session: 63						
Date 07-31-2021	Start Time 11:50:07	End Time 12:09:43	Cavity S/N 29222 30495	Setup 10:29 10:29	M (beg) 968.4 954.4	M (end) 968.4 954.4
Observations:	:					
Time 11:57:01	Zenith 20.45	ASR Red	Direct 428.8	% Diffuse 42.5	Operator Craig Webb	
Comments: clouds gettir	ng thicker, temp	o 38C, hum 35%,	, hpa 978, wnd d	irt 190 @ 6 mph	. will run till	solar noon.
Time 12:08:50	Zenith 19.49	ASR Blue	Direct 0.5	% Diffuse 99.8	Operator Craig Webb	
Comments: clouds becomi	ing too much tot	cal over cast o	quiting now.			
Session: 64						
Date 08-02-2021	Start Time 06:37:22	End Time 07:40:26	Cavity S/N 29222 30495	Setup 05:44 05:44	M (beg) 973.9 959.9	M (end) 973.4 960.1
Observations:	:					
Time 07:04:35	Zenith 73.99	ASR Blue	Direct 284.5	% Diffuse 56.5	Operator Craig Webb	
Comments: very hazy, te	emp 19C, hum 94 ⁹	*, hpa 985, wnd	d dir 180 @ 4 mp			
Time 07:24:40	Zenith 70.03	ASR Blue	Direct 346.8	* Diffuse 51.6	Operator Craig Webb	
Comments: still very ha	azy, temp 21C, 1	num 85%, hpa 98	35, wnd dir 020	0 5 mph.		
======================================						
Date 08-02-2021	Start Time 07:40:26	End Time 08:40:27	Cavity S/N 29222 30495	Setup 05:44 05:44	M (beg) 973.4 960.1	M (end) 972.3 958.1

Observations	:					
Time 08:09:38	Zenith 61.05	ASR Blue	Direct 467.8	% Diffuse 41.8	Operator Craig Webb	
Comments: still very h	azy, temp 23C,	hum 78%, hpa 98	84, wnd dir 010 (9 7 mph.		
Time 08:33:08	Zenith 56.35	ASR Blue	Direct 521.7	% Diffuse 38.5	Operator Craig Webb	
Comments: very little	chenge in sky c	onditions.				
Session: 66						
Date 08-02-2021	Start Time 08:40:27	End Time 09:40:30	Cavity S/N 29222 30495	Setup 05:44 05:44	M (beg) 972.3 958.1	M (end) 971.0 957.1
Observations	:					
Time 09:02:30	Zenith 50.48	ASR Blue	Direct 578.1	% Diffuse 35.0	Operator Craig Webb	
Comments: haze getting	thinner, temp	24C,. hum 73%,	 hpa 984, wnd di:	r 040 @ 7 mph.		
Session: 67						
Date 08-02-2021	Start Time 09:40:30	End Time 10:37:30	Cavity S/N 29222 30495	Setup 05:44 05:44	M (beg) 971.0 957.1	M (end) 970.2 956.5
Observations	:					
Time 09:43:46	Zenith 42.36	ASR Blue	Direct 618.4	% Diffuse 32.8	Operator Craig Webb	
Comments: light haze,	temp 26C, hum 6	8%, hpa 984, wi	nd dir 020 m@ 5 m	nph		
Session: 68						
Date 08-02-2021	Start Time 10:37:30	End Time 11:37:32	Cavity S/N 29222 30495	Setup 05:44 05:44	M (beg) 970.2 956.5	M (end) 969.5 955.8
Observations	:					
Time 10:38:21	Zenith 32.17	ASR Blue	Direct 626.6	% Diffuse 36.3	Operator Craig Webb	
Comments: clouds movine	g/form in local	area, temp 280	C, hum 63%, hpa	983, wnd dir 02	0 @ 5 mph.	
Time 11:11:30	Zenith 26.66	ASR Brown	Direct 643.2	% Diffuse 39.1	Operator Craig Webb	
Comments: clouds affect	ting readings,	will keep run	ning for a while			
Session: 69						
Date 08-02-2021	Start Time 11:37:32	End Time 12:37:36	Cavity S/N 29222 30495	Setup 05:44 05:44	M (beg) 969.5 955.8	M (end) 969.1 955.4

Observations	:					
Time 11:45:57	Zenith 22.03	ASR Brown	Direct 598.6	% Diffuse 40.6	Operator Craig Webb	
Comments: will run til	l after solar n	oon.				
Time 12:26:05	Zenith 19.17	ASR Blue	Direct 651.3	% Diffuse 34.4	Operator Craig Webb	
Comments: still a few	clouds in the a	rea, temp 29C,	hum 50%, hpa 98	3, wnd dir 030	0 6 mph.	
Session: 70						
Date 08-02-2021	Start Time 12:37:36	End Time 13:37:35	Cavity S/N 29222 30495	Setup 05:44 05:44	M (beg) 969.1 955.4	M (end) 968.5 955.0
Observations	:					
Time 12:58:29	Zenith 19.67	ASR Blue	Direct 638.1	% Diffuse 36.7	Operator Craig Webb	
Comments: a few clouds	left in the ar	ea, temp 29C, h	um 48%, hpa 982	, wnd dir 020 @	9 mph.	
Time 13:27:59	Zenith 22.21	ASR Blue	Direct 605.4	% Diffuse 36.9	Operator Craig Webb	
Comments: no change						
Session: 71						
Date 08-02-2021	Start Time 13:37:35	End Time 14:37:39	Cavity S/N 29222 30495	Setup 05:44 05:44	M (beg) 968.5 955.0	M (end) 968.2 954.9
Observations	:					
 Time 14:13:01	Zenith 28.61	ASR Green	Direct 592.9	% Diffuse 36.3	Operator Craig Webb	
Comments: some clouds,	low signal str	ength, temp 290	, hum 46%, hpa	982, wnd dir 20	0 @ 10 mph.	
======================================						
Date 08-02-2021	Start Time 14:37:39	End Time 15:34:40	Cavity S/N 29222 30495	Setup 05:44 05:44	M (beg) 968.2 954.9	M (end) 968.0 954.6
Observations	:					
 Time 14:42:55	Zenith 33.76	ASR Blue	Direct 584.9	% Diffuse 36.8	Operator Craig Webb	
Comments: some clouds	, temp 28C, hum	46%, hpa 982				
Time 15:08:05	Zenith 38.45	ASR Blue	Direct 592.3	% Diffuse 36.2	Operator Craig Webb	
Comments:						

no change

Time 15:30:54	Zenith 42.83	ASR Blue	Direct 585.2	% Diffuse 38.9	Operator Craig Webb	
Comments: [No	one]					
Session: 73						
Date 08-02-2021	Start Time 15:34:40	End Time 16:34:43	Cavity S/N 29222 30495	Setup 05:44 05:44	M (beg) 968.0 954.6	M (end) 967.9 955.0
Observations:	:					
 Time 16:00:44	Zenith 48.69	ASR Blue	Direct 522.4	% Diffuse 41.4	Operator Craig Webb	
Comments: lot of haze,	temp 29C, hum	45%, hpa 981, v	vnd dir 030 @ 6 r	nph.		
Time 16:31:41	Zenith 54.86	ASR Blue	Direct 562.9	% Diffuse 38.0	Operator Craig Webb	
Comments: no change.						-
Session: 74						
Date 08-02-2021	Start Time 16:34:43	End Time 16:54:48	Cavity S/N 29222 30495	Setup 05:44 05:44	M (beg) 967.9 955.0	M (end) 968.1 954.6
Observations:	:					
 Time 16:51:46	Zenith 58.89	ASR Red	Direct 388.7	% Diffuse 46.0	Operator Craig Webb	
Comments: closing down	for the day .					
Session: 75						
Date 08-03-2021	Start Time 06:39:52	End Time 07:39:51	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 974.6 959.6	M (end) 974.0 959.1
Observations:	:					
Time 07:06:18	Zenith 73.79	ASR Blue	Direct 251.9	% Diffuse 59.3	Operator Craig Webb	
Comments: very hazy , t	temp 19C, hum 9	7%, hpa 982, wr	nd dir 035 @ 3 mg	ph.		
Time 07:09:53	Zenith 73.09	ASR Blue	Direct 267.6	% Diffuse 58.0	Operator Craig Webb	
Comments: condensation	keeps form on t	unventilated ra	adiometers.			-
Session: 76						
Date 08-03-2021	Start Time 07:39:51	End Time 08:39:54	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 974.0 959.1	M (end) 972.7 958.4

Observations	:					
Time 07:40:25	Zenith 67.02	ASR Blue	Direct 382.8	% Diffuse 49.1	Operator Craig Webb	
Comments: hazy, temp 20	0C, hum 91%, hpa	a 982, wnd dir	050 @ 4 mph			
Time 08:30:29	Zenith 57.00	ASR Blue	Direct 526.0	% Diffuse 38.7	Operator Craig Webb	
Comments: hazy and smol	kie outside, tem	np 23C, hum 82 ^s	k, hpa 982, wnd (dir 060 @ 2 mph		
Session: 77						
Date 08-03-2021	Start Time 08:39:54	End Time 09:39:57	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 972.7 958.4	M (end) 971.7 957.3
Observations	:					
Time 08:53:38	Zenith 52.37	ASR Blue	Direct 549.9	% Diffuse 36.6	Operator Craig Webb	
Comments: hazy, temp 23	5C, hum 74%, hpa	a 982, wnd dir	033 @6 mph.			
Time 09:32:49	Zenith 44.62	ASR Blue	Direct 615.4	% Diffuse 33.0	Operator Craig Webb	
Comments: no change in	sky conditions,	temp 26C, hur	n 63%, hpa 982, n	wnd dir 040 @ 4	mph.	
Session: 78						
Date 08-03-2021	Start Time 09:39:57	End Time 10:07:02	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 971.7 957.3	M (end) 970.7 957.1
Observations	:					
Time 09:55:50	Zenith 40.18	ASR Blue	Direct 610.9	% Diffuse 33.4	Operator Craig Webb	
Comments: still hazy, n	no clouds yet, t	cemp 27C, hum s	58%, hpa 982, wn	d dir 070 @ 5 m	ph.	
Time 10:02:56	Zenith 38.83	ASR Blue	Direct 621.7	% Diffuse 33.1	Operator Craig Webb	
Comments: being there :	is no clouds for	rming now I wil	ll calibrate ear	ly getting read	y for solar noon	
Session: 79						
Date 08-03-2021	Start Time 10:07:02	End Time 11:09:04	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 970.7 957.1	M (end) 970.3 956.5
Observations	:					
Time 10:43:26	Zenith 31.46	ASR Brown	Direct 543.3	% Diffuse 37.3	Operator Craig Webb	
Comments:						

small cirrus clouds forming, temp 27C, hum 57%, hpa 982, wnd dir 041 @ 3 mph.

Time 11:03:44	Zenith 28.06	ASR Blue	Direct 651.5	% Diffuse 31.9	Operator Craig Webb	
Comments: clouds in the	e area causing a	alarms.				
Session: 80						
Date 08-03-2021	Start Time 11:09:04	End Time 12:07:04	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 970.3 956.5	M (end) 969.6 956.2
Observations	:					
Time 11:25:52	Zenith 24.75	ASR Blue	Direct 690.3	% Diffuse 29.1	Operator Craig Webb	
Comments: some clouds :	in area, temp 2	8C, hum 47%, hj	pa 981, wnd dir 1	136 @ 4 mph.		
Time 11:27:30	Zenith 24.53	ASR Blue	Direct 696.5	% Diffuse 28.9	Operator Craig Webb	
Comments: [No	one]					
Session: 81						
Date 08-03-2021	Start Time 12:07:04	End Time 13:07:07	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 969.6 956.2	M (end) 969.4 955.3
Observations	: [None]					
======================================						
Date 08-03-2021	Start Time 13:07:07	End Time 14:05:06	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 969.4 955.3	M (end) 969.3 955.5
Observations	:					
Time 13:45:29	Zenith 24.64	ASR Blue	Direct 688.7	% Diffuse 27.9	Operator Craig Webb	
Comments: still running	g, temp 29C, hu	n 43%, hpa 980	, wnd dir 092 @ 4	4 mph.		
Session: 83						
Date 08-03-2021	Start Time 14:05:06	End Time 15:02:09	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 969.3 955.5	M (end) 968.9 955.0
Observations	:					
Time 14:15:20	Zenith 29.18	ASR Green	Direct 709.8	% Diffuse 26.6	Operator Craig Webb	
Comments: A few small o	clouds in area,	temp 29C, hum	41%, hpa 980, wr	nd dir 040 @ 5	mph.	
Session: 84			=			
Date 08-03-2021	Start Time 15:02:09	End Time 16:02:14	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 968.9 955.0	M (end) 968.9 955.2

Observations	:					
Time 15:05:13	Zenith 38.08	ASR Blue	Direct 692.5	% Diffuse 27.7	Operator Craig Webb	-
Comments: clouds seem t	to be clearing o	out, temp 29C,	hum 43%, hpa 98	0, wnd dir 053	0 m5 mph,	-
Time 15:31:14	Zenith 43.07	ASR Blue	Direct 655.7	% Diffuse 29.1	Operator Craig Webb	-
Comments: no change,						-
Session: 85						
Date 08-03-2021	Start Time 16:02:14	End Time 17:02:17	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 968.9 955.2	M (end) 969.1 955.3
Observations	:					
Time 16:02:18	Zenith 48.65	ASR 4	Direct 632.1	% Diffuse 30.4	Operator Craig Webb	
Comments: clear with a	few clouds to t	the north, temp	o 29C, hum 40%,	hpa 980, wnd di	r 041 @ 2 mph.	-
Session: 86						
Date 08-03-2021	Start Time 17:02:17	End Time 17:58:07	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 969.1 955.3	M (end) 968.9 955.4
Observations:	:					
 Time 17:02:21	Zenith 60.65	ASR 4	Direct 511.9	% Diffuse 37.2	Operator Craig Webb	-
Comments: clear with a	few clouds to t	the North, temp	o 29C, hum 39%, 3	hpa 980, wnd di	r 080 @ 4 mph.	-
 Time 17:53:22	Zenith 71.35	ASR Blue	Direct 395.7	* Diffuse 45.2	Operator Craig Webb	-
Comments: a few alarms,	,temp 28C, hum 4	14%, hpa 980- v	vnd dir 045 @ 2 m	mph. going to q	uite for the day.	-
Time 17:57:18	Zenith 71.78	ASR Blue	Direct 393.2	* Diffuse 45.5	Operator Craig Webb	-
Comments: [No	one]					-
======================================						
Date 08-06-2021	Start Time 07:41:06	End Time 08:42:06	Cavity S/N 29222 30495	Setup 07:15 07:15	M (beg) 972.7 958.5	M (end) 971.7 957.6
Observations						
Time 07:51:09	Zenith 65.25	ASR Blue	Direct 416.4	% Diffuse 44.6	Operator Craig Webb	-
Comments: clear but sky	/ is smokie, ter	np 22C, hum 96%	s, hpa 979, wnd	dir 070 @ 4 mph		-
 Time 08:15:00	Zenith 60.48	ASR Blue	Direct 479.9	% Diffuse 40.1	Operator Craig Webb	-
						_

Comments: still smokie probly shut o	sky, temp 24C, down due to low	hum 88%, hpa s readings.	979, wnd dir 120	0 6 mph. look	s like I will ru	n for a wile but
Session: 88						
Date 08-06-2021	Start Time 08:42:06	End Time 09:42:08	Cavity S/N 29222 30495	Setup 07:15 07:15	M (beg) 971.7 957.6	M (end) 970.8 956.9
Observations	:					
Time 09:00:01	Zenith 51.49	ASR Blue	Direct 576.3	% Diffuse 33.8	Operator Craig Webb	
Comments: finally got a	above 500 watts	, temp 26C, hur	n 77%, hpa 979,	wnd dir 135 @ 8	mph.	
Session: 89						
Date 08-06-2021	Start Time 09:42:08	End Time 10:40:11	Cavity S/N 29222 30495	Setup 07:15 07:15	M (beg) 970.8 956.9	M (end) 970.0 956.0
Observations	:					
Time 09:49:45	Zenith 41.77	ASR Blue	Direct 641.0	% Diffuse 29.8	Operator Craig Webb	
Comments: smokie, temp	28C, hum 70%, 1	npa 979, wnd d	ir 095 @ 6 mph.			
Time 10:11:40	Zenith 37.65	ASR Blue	Direct 668.2	% Diffuse 27.9	Operator Craig Webb	
Comments: [No	one]					
Session: 90						
Date 08-06-2021	Start Time 10:40:11	End Time 11:03:27	Cavity S/N 29222 30495	Setup 07:15 07:15	M (beg) 970.0 956.0	M (end) 969.7 956.1
Observations	:					
Time 10:40:26	Zenith 32.48	ASR Blue	Direct 678.1	% Diffuse 28.1	Operator Craig Webb	
Comments: a few clouds get ready fo:	starting to fo: r solar noon.	rm, temp 31C, 1	num 62%, hpa 979	, wnd dir 094 @	2 mph. will cal	ibrate early to
Time 11:00:33	Zenith 29.12	ASR Green	Direct 635.9	% Diffuse 30.7	Operator Craig Webb	
Comments: [No	one]					
Session: 91						
Date 08-06-2021	Start Time 11:03:27	End Time 12:03:31	Cavity S/N 29222 30495	Setup 07:15 07:15	M (beg) 969.7 956.1	M (end) 968.7 955.3
Observations	:					
Time 11:20:43	Zenith 26.09	ASR Green	Direct 636.7	% Diffuse 31.4	Operator Craig Webb	

Comments:

lots of smoke, temp 33C, hum 56%, hpa 979, wmd dir 1502 11 mph
Time 11:47:04	Zenith 22.83	ASR Green	Direct 646.3	% Diffuse 31.0	Operator Craig Webb	
Comments: [N	one]					
Session: 92						
Date 08-06-2021	Start Time 12:03:31	End Time 13:03:33	Cavity S/N 29222 30495	Setup 07:15 07:15	M (beg) 968.7 955.3	M (end) 968.2 955.2
Observations	: [None]					
Session: 93						:=============
Date 08-06-2021	Start Time 13:03:33	End Time 13:59:35	Cavity S/N 29222 30495	Setup 07:15 07:15	M (beg) 968.2 955.2	M (end) 967.9 954.6
Observations	:					
Time 13:14:09	Zenith 21.85	ASR Blue	Direct 644.7	% Diffuse 33.0	Operator Craig Webb	
Comments: one cloud go	t in the way so	far, temp 34C,	, hum 46%, hpa 97	7, wnd dir 130	@ 13 mph.	
Time 13:35:05	Zenith 24.03	ASR Blue	Direct 579.9	% Diffuse 35.8	Operator Craig Webb	
Comments: [N	one]					
Session: 94						
Date 08-06-2021	Start Time 13:59:35	End Time 14:58:37	Cavity S/N 29222 30495	Setup 07:15 07:15	M (beg) 967.9 954.6	M (end) 967.5 953.9
Observations	:					
Time 14:02:51	Zenith 27.86	ASR Blue	Direct 592.1	% Diffuse 34.4	Operator Craig Webb	
Comments: still a few	clouds in the a	rea, temp 35C,	hum 45%, hpa 977	7, wnd dir 145	0 6 mph.	
Session: 95						
Date 08-06-2021	Start Time 14:58:37	End Time 15:58:37	Cavity S/N 29222 30495	Setup 07:15 07:15	M (beg) 967.5 953.9	M (end) 967.4 953.9
Observations	:					
Time 14:58:52	Zenith 37.47	ASR Blue	Direct 605.6	% Diffuse 34.1	Operator Craig Webb	
Comments: some clouds	in area, temp 3	5C, hum 38%, hp	ba 976, wnd dir 1	.12 @ 13 mph.		
Time 15:23:18	Zenith 42.07	ASR Blue	Direct 583.0	<pre>% Diffuse</pre>	Operator Craig Webb	
Comments: [N	one]					

Session: 96						
Date 08-06-2021	Start Time 15:58:37	End Time 16:58:40	Cavity S/N 29222	Setup 07:15	M (beg) 967.4	M (end) 967.2
			30495	07:15	953.9	953.7
)bservations:	:					
 Cime	Zenith	ASR	Direct	% Diffuse	Operator	
15:59:16	49.09	Blue	539.1	38.0	Craig Webb	
Comments: some clouds i	in area, temp 35	5C, hum 42%, hp	pa 976, wnd dir 1	120 @ 6 mph.		
Fime L6:44:07	Zenith 58.03	ASR Blue	Direct 488.3	% Diffuse 39.5	Operator Craig Webb	
Comments: [No	one]					
Session: 97						
 Date	Start Time	End Time	Cavity S/N	- Setup	M (beg)	M (end)
08-06-2021	16:58:40	17:32:24	29222	07:15	967.2	967.8
			30495	07:15	953.7	953.6
)bservations:	: 					
lime	Zenith	ASR	Direct	% Diffuse	Operator	
L7:05:11	62.25	Blue	427.0	42.7	Craig Webb	
some clouds i started this	in area, temp 34 morning.	4C, hum 46%, hp	pa 976, wnd dir 1	L14 @ 7 mph. w	vill run til 67 c	legrees whe
some clouds i started this Fime 17:29:22	in area, temp 34 morning. Zenith 67.09	4C, hum 46%, hp ASR Blue	pa 976, wnd dir 1 Direct 385.6	114 @ 7 mph. w % Diffuse 48.7	Vill run til 67 d Operator Craig Webb	degrees whe
Some clouds is started this Time 17:29:22 Comments: closing down	in area, temp 34 morning. Zenith 67.09 for the day	4C, hum 46%, hy ASR Blue	Direct 385.6	114 @ 7 mph. w % Diffuse 48.7	Operator Craig Webb	degrees whe
Some clouds is started this Time 17:29:22 Comments: closing down Session: 98	in area, temp 34 morning. Zenith 67.09 for the day	4C, hum 46%, h ASR Blue	Direct 385.6	114 @ 7 mph. w % Diffuse 48.7	Operator Craig Webb	degrees whe
Some clouds is started this fime 17:29:22 Comments: closing down Session: 98 Date	in area, temp 34 morning. Zenith 67.09 for the day Start Time	ASR Blue End Time	Direct 385.6 Cavity S/N	114 @ 7 mph. w % Diffuse 48.7 Setup	Operator Craig Webb	degrees whe M (end)
Some clouds is started this fime 17:29:22 Comments: closing down Session: 98 Date 08-09-2021	in area, temp 34 morning. Zenith 67.09 for the day Start Time 06:58:19	4C, hum 46%, hp ASR Blue End Time 07:57:19	Direct 385.6 Cavity S/N 29222	L14 @ 7 mph. w % Diffuse 48.7 Setup 06:25 07.15	M (beg) 972.6 059.5	degrees whe
Some clouds is started this fime 17:29:22 Comments: closing down Session: 98 Date 08-09-2021	in area, temp 34 morning. Zenith 67.09 for the day Start Time 06:58:19	ASR Blue End Time 07:57:19	pa 976, wnd dir 1 Direct 385.6 Cavity S/N 29222 30495	L14 @ 7 mph. w % Diffuse 48.7 Setup 06:25 07:15	M (beg) 972.6 958.5	degrees whe
Some clouds is started this fime 17:29:22 Comments: closing down Session: 98 Date 08-09-2021	in area, temp 34 morning. Zenith 67.09 for the day Start Time 06:58:19	AC, hum 46%, hy ASR Blue End Time 07:57:19	pa 976, wnd dir 1 Direct 385.6 Cavity S/N 29222 30495	L14 @ 7 mph. w % Diffuse 48.7 Setup 06:25 07:15	M (beg) 972.6 958.5	degrees whe
Some clouds is started this fime [7:29:22 Comments: closing down Session: 98 Conte 08-09-2021 Coste 08-09-2021	in area, temp 34 morning. Zenith 67.09 for the day Start Time 06:58:19 Zenith	ASR End Time 07:57:19	Direct Cavity S/N 29222 30495	<pre>114 @ 7 mph. w % Diffuse</pre>	M (beg) 972.6 958.5 Operator	degrees whe
Some clouds is some clouds is started this fime 17:29:22 Comments: closing down Session: 98 Date 08-09-2021 Observations: fime 07:22:02	in area, temp 34 morning. Zenith 67.09 for the day Start Time 06:58:19 Zenith 71.45	ASR Blue End Time 07:57:19 ASR Blue	Direct 385.6 Cavity S/N 29222 30495 Direct 330.1	<pre>L14 @ 7 mph. w % Diffuse</pre>	M (beg) 972.6 958.5 Operator Craig Webb	degrees whe
Some clouds is some clouds is started this Time 17:29:22 Comments: closing down Session: 98 Date 08-09-2021 Conservations: Time 07:22:02 Comments: a few clouds	in area, temp 34 morning. Zenith 67.09 for the day Start Time 06:58:19 Zenith 71.45 in area, temp 2	AC, hum 46%, hy ASR Blue End Time 07:57:19 ASR Blue 27C, hum 79%, h	pa 976, wnd dir 1 Direct 385.6 Cavity S/N 29222 30495 Direct 330.1	<pre>114 @ 7 mph. w % Diffuse</pre>	M (beg) 972.6 958.5 Operator Craig Webb	degrees whe
Some clouds is some clouds is started this Time 17:29:22 Comments: closing down Session: 98 Date 08-09-2021 Observations: Time 07:22:02 Comments: a few clouds Session: 99	in area, temp 34 morning. Zenith 67.09 for the day Start Time 06:58:19 Zenith 71.45 in area, temp 2	ASR Blue End Time 07:57:19 ASR Blue 27C, hum 79%, 1	pa 976, wnd dir 1 Direct 385.6 Cavity S/N 29222 30495 Direct 330.1	<pre>L14 @ 7 mph. w % Diffuse</pre>	M (beg) 972.6 958.5 Operator Craig Webb	degrees whe
Some clouds is some clouds is started this Cime (7:29:22 Comments: closing down Session: 98 Date 08-09-2021 Comments: a few clouds Session: 99 Coate	in area, temp 34 morning. Zenith 67.09 for the day Start Time 06:58:19 Zenith 71.45 in area, temp 2 Start Time	ASR Blue End Time 07:57:19 ASR Blue 27C, hum 79%, H End Time	Direct 385.6 Cavity S/N 29222 30495 Direct 330.1 hpa 975, wnd dir Cavity S/N	<pre>114 @ 7 mph. w % Diffuse</pre>	M (beg) 972.6 958.5 Operator Craig Webb M (beg) 972.6 958.5	degrees whe
Some clouds is some clouds is started this fime 17:29:22 Comments: closing down Session: 98 Date 08-09-2021 Comments: a few clouds Session: 99 Date 08-09-2021	in area, temp 34 morning. Zenith 67.09 for the day Start Time 06:58:19 Zenith 71.45 in area, temp 2 Start Time 07:57:19	ASR Blue End Time 07:57:19 ASR Blue 27C, hum 79%, h End Time 08:57:21	Direct 385.6 Cavity S/N 29222 30495 Direct 330.1 hpa 975, wnd dir Cavity S/N 29222 30495	<pre>114 @ 7 mph. w % Diffuse</pre>	M (beg) 972.6 958.5 Operator Craig Webb Operator Craig Webb M (beg) 970.4 970.4 956.5	degrees whe
Some clouds is some clouds is started this fime 17:29:22 Comments: closing down Session: 98 Date 08-09-2021 Comments: a few clouds Session: 99 Comments: a few clouds Session: 99 Coate 08-09-2021	in area, temp 34 morning. Zenith 67.09 for the day Start Time 06:58:19 Zenith 71.45 in area, temp 2 Start Time 07:57:19	AC, hum 46%, hy ASR Blue End Time 07:57:19 ASR Blue 27C, hum 79%, h End Time 08:57:21	Direct 385.6 Cavity S/N 29222 30495 Direct 330.1 hpa 975, wnd dir Cavity S/N 29222 30495	<pre>114 @ 7 mph. w % Diffuse</pre>	M (beg) 972.6 958.5 Operator Craig Webb Operator Craig Webb M (beg) 978.5	degrees whe
Some clouds is some clouds is started this Cime (7:29:22 Comments: closing down Session: 98 Date 08-09-2021 Comments: a few clouds Session: 99 Comments: a few clouds Session: 99 Coate 08-09-2021	in area, temp 34 morning. Zenith 67.09 for the day Start Time 06:58:19 Zenith 71.45 in area, temp 2 Start Time 07:57:19	ASR Blue End Time 07:57:19 ASR Blue 27C, hum 79%, 1 End Time 08:57:21	Direct 385.6 Cavity S/N 29222 30495 Direct 330.1 Direct 330.1 Cavity S/N 29222 30495	<pre>114 @ 7 mph. w % Diffuse</pre>	M (beg) 972.6 958.5 Operator Craig Webb Operator Craig Webb M (beg) 970.4 956.5	degrees whe
Some clouds is some clouds is started this fime 17:29:22 Comments: closing down Session: 98 Date 08-09-2021 Comments: a few clouds Session: 99 Date 08-09-2021 Comments: a few clouds Session: 99 Date 08-09-2021 Comments: a few clouds Session: 99 Date 08-09-2021	in area, temp 34 morning. Zenith 67.09 for the day Start Time 06:58:19 Zenith 71.45 in area, temp 2 Start Time 07:57:19 Zenith 64.00	ASR Blue End Time 07:57:19 ASR Blue 27C, hum 79%, H End Time 08:57:21	Direct 385.6 Cavity S/N 29222 30495 Direct 330.1 Direct 330.1 Cavity S/N 29222 30495 Direct 437.6	<pre>114 @ 7 mph. w % Diffuse</pre>	M (beg) 972.6 958.5 Operator Craig Webb Operator Craig Webb M (beg) 978.5 Operator Craig Webb	degrees whe

smokie, temp 30C, hum 68%, hpa 973, wnd dir 106 @ 10 mph

Time 08:26:11	Zenith 58.63	ASR Blue	Direct 483.1	% Diffuse 39.9	Operator Craig Webb	
Comments: [No	one]					
======================================						
Date 08-09-2021	Start Time 08:57:21	End Time 09:57:24	Cavity S/N 29222 30495	Setup 06:25 07:15	M (beg) 969.5 955.9	M (end) 968.7 955.4
Observations:	:					
Time 08:58:14	Zenith 52.25	ASR Blue	Direct 557.8	% Diffuse 35.2	Operator Craig Webb	
Comments: samokie, temp	o 31C, hum 61%,	hpa 974, wnd d	lir 115 @ 18 mph.			
Time 09:31:00	Zenith 45.81	ASR Green	Direct 599.4	% Diffuse 32.5	Operator Craig Webb	
Comments: [No	one]					
Session: 101						
Date 08-09-2021	Start Time 09:57:24	End Time 10:56:26	Cavity S/N 29222 30495	Setup 06:25 07:15	M (beg) 968.7 955.4	M (end) 968.1 955.1
Observations:	:					
 Time 09:57:59	Zenith 40.65	ASR Blue	Direct 634.5	% Diffuse 30.1	Operator Craig Webb	
Comments: clear with sn	noke in sky, tem	np 33C, hum 58%	, hpa 974 wnd di	ir 128 @ 19 mph.		
Session: 102						
Date 08-09-2021	Start Time 10:56:26	End Time 11:56:30	Cavity S/N 29222 30495	Setup 06:25 07:15	M (beg) 968.1 955.1	M (end) 967.5 954.3
Observations:	:					
Time 10:56:59	Zenith 30.27	ASR Blue	Direct 643.4	% Diffuse 30.2	Operator Craig Webb	
Comments: smokie but no	o clouds yet, te	emp 34C, hum 53	%, hpa 974, wnd	dir 145 @ 14 mpl	n.	
Time 11:42:18	Zenith 24.06	ASR Blue	Direct 671.2	% Diffuse 28.7	Operator Craig Webb	
Comments: [No	one]					
Session: 103						
Date 08-09-2021	Start Time 11:56:30	End Time 12:56:32	Cavity S/N 29222 30495	Setup 06:25 07:15	M (beg) 967.5 954.3	M (end) 967.2 954.1
Observations:						
 Time 12:02:52	Zenith 22.18	ASR Blue	Direct 685.6	% Diffuse 27.7	Operator Craig Webb	

Comments: this should (catch solar noo	n, temp 35C, hu	ım 48%, hpa 973,	wnd dir 130 @	13 mph	
Time 12:23:13	Zenith 21.15	ASR Brown	Direct 696.6	% Diffuse 26.9	Operator Craig Webb	
Comments: [No	one]					
Fime 12:44:19	Zenith 21.07	ASR Green	Direct 708.5	% Diffuse 25.8	Operator Craig Webb	
Comments: [No	one]					
Session: 104						
Date)8-09-2021	Start Time 12:56:32	End Time 13:56:31	Cavity S/N 29222 30495	Setup 06:25 07:15	M (beg) 967.2 954.1	M (end) 966.9 953.6
Observations	:					
Fime 13:04:26	Zenith 21.95	ASR Blue	Direct 690.3	% Diffuse 27.0	Operator Craig Webb	
Comments: smokie, temp	36C, hum 50%,	hpa 973, wnd d:	ir 120 @ 16 mph.			
- Time 13:49:44	Zenith 26.70	ASR Blue	Direct 622.1	% Diffuse 31.9	Operator Craig Webb	
Comments: [No	one]					
Session: 105						
Date 08-09-2021	Start Time 13:56:31	End Time 14:55:36	Cavity S/N 29222 30495	Setup 06:25 07:15	M (beg) 966.9 953.6	M (end) 966.9 953.5
Observations	:					
Fime 14:04:31	Zenith 28.84	ASR Blue	Direct 618.4	% Diffuse 32.9	Operator Craig Webb	
Comments: smokie, temp	37C, hum 48, h	pa 972, wnd dii	r 156 @ 19 mph.			
Time 14:19:08	Zenith 31.15	ASR Green	Direct 609.1	% Diffuse 33.2	Operator Craig Webb	
Comments: STD 31152F3 1	keeps alarming	,I have cleanro	d dome check leve	eling and find	nothing wrong.	
Fime 14:20:59	Zenith 31.45	ASR Blue	Direct 609.6	% Diffuse 33.2	Operator Craig Webb	
Comments: clouds formin	ng to the south	east.				
Time 14:52:52	Zenith 36.99	ASR Red	Direct 520.1	% Diffuse 41.6	Operator Craig Webb	
Comments: [No	one] ====================================					
Session: 106						
Date 08-09-2021	Start Time 14:55:36	End Time 15:49:55	Cavity S/N 29222 30495	Setup 06:25 07:15	M (beg) 966.9 953.5	M (end) 966.6 953.3

Observations	:					
Time 15:11:24	Zenith 40.41	ASR Red	Direct 251.1	% Diffuse 63.2	Operator Craig Webb	
Comments: clouds in ar	ea, temp 37C, h	um 49%, hpa 972	2, wnd dir 130 @	6 mph.		
Time 15:28:53	Zenith 43.74	ASR Green	Direct 550.7	% Diffuse 39.0	Operator Craig Webb	
Comments: with clouds	in area going t	o quit at the e	end of this sess:	ion.		
Time 15:47:09	Zenith 47.27	ASR Blue	Direct 530.1	% Diffuse 39.7	Operator Craig Webb	
Comments: [N	one]					
Session: 107						
Date 08-10-2021	Start Time 06:54:13	End Time 07:54:15	Cavity S/N 29222 30495	Setup 06:35 06:35	M (beg) 970.6 956.3	M (end) 969.3 956.3
Observations	:					
Time 07:28:34	Zenith 70.29	ASR Blue	Direct 385.8	% Diffuse 45.9	Operator Craig Webb	
Comments: clear but lo	w levels, temp	29C, hum 73%, h	npa 976, wnd dir	090 @ 12 mph.		
Session: 108						
Date 08-10-2021	Start Time 07:54:15	End Time 08:55:16	Cavity S/N 29222 30495	Setup 06:35 06:35	M (beg) 969.3 956.3	M (end) 969.3 955.5
Observations	:					
Time 07:54:32	Zenith 65.10	ASR Blue	Direct 474.3	% Diffuse 39.2	Operator Craig Webb	
Comments: clear but si	gnal weak due t	o smoke, temp 2	29C, hum 69%, hpa	a 976, wnd dir	108 @ 17 mph.	
Time 08:10:28	Zenith 61.90	ASR Blue	Direct 521.7	% Diffuse 35.9	Operator Craig Webb	
Comments: [N	one]					
Session: 109						
Date 08-10-2021	Start Time 08:55:16	End Time 09:56:18	Cavity S/N 29222 30495	Setup 06:35 06:35	M (beg) 969.3 955.5	M (end) 968.4 954.5
Observations	:					
 Time 09:06:16	Zenith 50.79	ASR Blue	Direct 648.7	% Diffuse 27.6	Operator Craig Webb	
Comments: clear and wit	ndy, termp 32C,	hum 60, hpa 97	'6, wnd dir 130 (3 24 mph.		
Time 09:53:16	Zenith 41.69	ASR Blue	Direct 724.1	% Diffuse 22.8	Operator Craig Webb	
Comments: [N	one]					

Session: 110						
Date 08-10-2021	Start Time 09:56:18	End Time 10:56:21	Cavity S/N 29222 30495	Setup 06:35 06:35	M (beg) 968.4 954.5	M (end) 968.0 954.7
Observations:	:					
Time 10:13:39	Zenith 37.91	ASR Green	Direct 743.5	% Diffuse 21.5	Operator Craig Webb	
Comments: clear and wir	ndy, temp 32C, 1	hum 57%, hpa 9 ⁻	76, wnd dir 104@	26 mph.		
Time 10:48:38	Zenith 31.82	ASR Green	Direct 805.7	% Diffuse 17.0	Operator Craig Webb	
Comments: [No	one]					
Session: 111						
Date 08-10-2021	Start Time 10:56:21	End Time 11:56:23	Cavity S/N 29222 30495	Setup 06:35 06:35	M (beg) 968.0 954.7	M (end) 967.4 954.0
Observations:	:					
Time 11:00:35	Zenith 29.90	ASR Blue	Direct 829.4	% Diffuse 15.4	Operator Craig Webb	
Comments: hot and windy	y, temp 34C, hu	m 54%, hpa 976,	, wnd dir 124 @ 3	18 mph.		
Time 11:50:46	Zenith 23.45	ASR Blue	Direct 858.9	% Diffuse 13.6	Operator Craig Webb	
Comments: [No	one]					
Session: 112						
Date 08-10-2021	Start Time 11:56:23	End Time 12:53:24	Cavity S/N 29222 30495	Setup 06:35 06:35	M (beg) 967.4 954.0	M (end) 966.9 953.8
Observations:	:					
Time 12:12:36	Zenith 21.86	ASR Green	Direct 863.5	% Diffuse 13.4	Operator Craig Webb	
Comments: solar noon th	nis run, temp 3	6C, hum 50%, hp	pa 976, wnd dir ()37 @ 14 mph.		
Time 12:33:05	Zenith 21.28	ASR Blue	Direct 866.5	<pre>% Diffuse 13.2</pre>	Operator Craig Webb	
Comments: [No	one]					
Session: 113						
Date 08-10-2021	Start Time 12:53:24	End Time 13:53:26	Cavity S/N 29222 30495	Setup 06:35 06:35	M (beg) 966.9 953.8	M (end) 966.7 953.5
Observations:	:					
Time 12:54:37	Zenith 21.71	ASR Green	Direct 861.4	% Diffuse 13.5	Operator Craig Webb	

Time	Zenith	ASR	Direct	% Diffuse	Operator	
13:33:48	24.95	Blue	865.1	13.1	Craig Webb	
Comments: [No	one]					
Session: 114						
Date 08-10-2021	Start Time 13:53:26	End Time 14:53:28	Cavity S/N 29222 30495	Setup 06:35 06:35	M (beg) 966.7 953.5	M (end) 966.3 953.3
Observations:						
Time 13:54:48	Zenith 27.66	ASR Blue	Direct 864.7	% Diffuse 13.2	Operator Craig Webb	
Comments: clear hot and	d windy, temp 3	6C, hum 46%, hp	pa 975, wnd dirl	42 @ 20 mph.		
Time 14:46:50	Zenith 36.14	ASR Green	Direct 837.4	% Diffuse 14.3	Operator Craig Webb	
Comments: [No	one]					
Session: 115						
Date 08-10-2021	Start Time 14:53:28	End Time 15:54:31	Cavity S/N 29222 30495	Setup 06:35 06:35	M (beg) 966.3 953.3	M (end) 966.3 953.3
Observations:	:					
Time 14:55:14	Zenith 37.65	ASR Blue	Direct 826.3	% Diffuse 14.8	Operator Craig Webb	
Comments: a few small o	cirrus forming	to the n/w, ter	np 37C, hum 43%,	hpa 974, wnd d	ir 120 @ 27 mph.	
Time 15:28:57	Zenith 43.94	ASR Blue	Direct 807.7	% Diffuse 15.7	Operator Craig Webb	
Comments: [No	one]					
Session: 116						
Date 08-10-2021	Start Time 15:54:31	End Time 16:55:33	Cavity S/N 29222 30495	Setup 06:35 06:35	M (beg) 966.3 953.3	M (end) 966.1 952.9
Observations:	[None]					
Session: 117						
Date 08-10-2021	Start Time 16:55:33	End Time 17:55:35	Cavity S/N 29222 30495	Setup 06:35 06:35	M (beg) 966.1 952.9	M (end) 966.2 953.1
Observations:						
Time 17:49:10	Zenith 71.79	ASR Blue	Direct 518.7	% Diffuse 32.6	Operator Craig Webb	
Comments: [No	nel					-

Session: 118						
Date 08-10-2021	Start Time 17:55:35	End Time 18:11:06	Cavity S/N 29222 30495	Setup 06:35 06:35	M (beg) 966.2 953.1	M (end) 966.5 952.7
Observations:	[None]					
======================================						
Date 08-23-2021	Start Time 07:35:31	End Time 08:35:32	Cavity S/N 29222 30495	Setup 06:25 06:25	M (beg) 970.2 956.8	M (end) 969.3 955.9
Observations:						
Time 07:56:11	Zenith 66.55	ASR Blue	Direct 697.7	% Diffuse 20.1	Operator Craig Webb	
Comments: a few small c.	louds in area,	temp 29C, hum 68	%, hpa 976, wi	nd dir 150 @ 16 m	nph	
Time 08:29:44	Zenith 59.88	ASR Blue	Direct 763.1	* Diffuse 16.7	Operator Craig Webb	_
Comments: [Noi	ne]					
Session: 120						
Date 08-23-2021	Start Time 08:35:32	End Time 09:35:35	Cavity S/N 29222 30495	Setup 06:25 06:25	M (beg) 969.3 955.9	M (end) 968.5 955.0
Observations:						
Time 08:50:00	Zenith 55.88	ASR Green	Direct 801.9	% Diffuse 14.7	Operator Craig Webb	
Comments: some clouds to	o the north and	d west, temp 31C,	hum 53%, hpa	976, wnd dir 16	5 @ 12 mph.	
Time 09:17:11	Zenith 50.63	ASR Blue	Direct 839.2	% Diffuse 13.1	Operator Craig Webb	
Comments: [No:	ne] 					
Session: 121						
Date 08-23-2021	Start Time 09:35:35	End Time 10:35:36	Cavity S/N 29222 30495	Setup 06:25 06:25	M (beg) 968.5 955.0	M (end) 967.5 954.5
Observations:						
Time 09:39:12	Zenith 46.45	ASR Blue	Direct 845.1	% Diffuse 12.9	Operator Craig Webb	
Comments: some clouds to	o the north and	4 west, temp 34C,	hum 40%, hpa	976, wnd dir 14	0 @ 17 mph.	_
Time 10:23:31	Zenith 38.57	ASR Blue	Direct 868.5	% Diffuse 12.1	Operator Craig Webb	_
Comments: [Noi	ne]					

Session: 122						
Date 08-23-2021	Start Time 10:35:36	End Time 11:02:39	Cavity S/N 29222 30495	Setup 06:25 06:25	M (beg) 967.5 954.5	M (end) 967.2 953.9
bservations:	:					
'ime .0:49:58	Zenith 34.33	ASR Blue	Direct 891.2	% Diffuse 11.0	Operator Craig Webb	
Comments: some cloudsi	the area, temp	35C, hum 35%,	hpa 976, wnd di	r 145 @ 13 mph.		
session: 123						
Date 08-23-2021	Start Time 11:02:39	End Time 12:00:42	Cavity S/N 29222 30495	Setup 06:25 06:25	M (beg) 967.2 953.9	M (end) 966.8 953.6
bservations:	:					
'ime 1:10:06	Zenith 31.46	ASR Blue	Direct 908.3	% Diffuse 10.2	Operator Craig Webb	
Comments: some clouds i	in area, temp 3	6C, hum 33%, hj	pa 976, wnd dir 1	106 @ 14 mph.		
Session: 124						
Date 08-23-2021	Start Time 12:00:42	End Time 13:04:44	Cavity S/N 29222 30495	Setup 06:25 06:25	M (beg) 966.8 953.6	M (end) 966.4 953.2
bservations:	:					
'ime 2:21:44	Zenith 25.54	ASR Red	Direct 612.5	% Diffuse 29.4	Operator Craig Webb	
Comments: clouds moving	g into the area	, temp 37C, hur	n 29%, hpa 976, t	wnd dir 109 @ n	17 mph.	
'ime .2:49:20	Zenith 25.71	ASR Brown	Direct 933.5	% Diffuse 10.3	Operator Craig Webb	
Comments: [No	one]					
ession: 125						
Date 08-23-2021	Start Time 13:04:44	End Time 14:04:45	Cavity S/N 29222 30495	Setup 06:25 06:25	M (beg) 966.4 953.2	M (end) 967.5 954.1
bservations:	:					
lime 3:13:24	Zenith 27.06	ASR Blue	Direct 935.0	% Diffuse 12.7	Operator Craig Webb	
Comments: some clouds i	in area, temp 3	7C, hum 30%, hj	pa 976, wnd dir 1	136 @ 14 mph.		
	Zenith	ASR	Direct	% Diffuse	Operator	
11me 3:14:11	27.12	Blue	930.9	13.2	Craig Webb	

Session: 126						
Date 08-23-2021	Start Time 14:04:45	End Time 15:04:45	Cavity S/N 29222 30495	Setup 06:25 06:25	M (beg) 967.5 954.1	M (end) 966.0 952.9
Observations	:					
Time 14:21:43	Zenith 35.38	ASR Green	Direct 783.7	% Diffuse 12.5	Operator Craig Webb	
Comments: clouds seem 1	to be clearing	out, temp 38C,	hum 30%, hpa 974	4, wnd dir 095	@ 20 mph.	
Time 14:45:42	Zenith 39.32	ASR Green	Direct 744.4	% Diffuse 14.1	Operator Craig Webb	
Comments: [No	one]					
Session: 127						
Date 08-23-2021	Start Time 15:04:45	End Time 16:01:47	Cavity S/N 29222 30495	Setup 06:25 06:25	M (beg) 966.0 952.9	M (end) 965.7 953.0
Observations	:					
Time 15:37:10	Zenith 48.65	ASR Blue	Direct 851.8	% Diffuse 12.9	Operator Craig Webb	
Comments: clearing temp	p 37C, hum 27%,	hpa 973, wnd d	lir 144 @ 20 mph.			
Time 15:58:00	Zenith 52.64	ASR Blue	Direct 841.1	% Diffuse 12.9	Operator Craig Webb	
Comments: [No	one]					
Session: 128						
Date 08-23-2021	Start Time 16:01:47	End Time 17:01:49	Cavity S/N 29222 30495	Setup 06:25 06:25	M (beg) 965.7 953.0	M (end) 966.1 952.7
Observations	:					
Time 16:19:42	Zenith 56.87	ASR Green	Direct 808.8	% Diffuse 14.6	Operator Craig Webb	
Comments: temp 37C, hur	m 28%, hpa 973,	wnd dir 136 @	14 mph			
Time 16:42:18	Zenith 61.35	ASR Blue	Direct 764.0	% Diffuse 16.3	Operator Craig Webb	
Comments: [No	one]					
Session: 129						
Date 08-23-2021	Start Time 17:01:49	End Time 17:59:22	Cavity S/N 29222 30495	Setup 06:25 06:25	M (beg) 966.1 952.7	M (end) 965.9 952.7
Observations	:					
Time 17:23:38	Zenith 69.60	ASR Blue	Direct 681.9	% Diffuse 20.3	Operator Craig Webb	

Comments: temp 36C, hur	m 29%, hpa 973,	wnd dir 126 @	10 mph.			
Time 17:51:58	Zenith 75.28	ASR Blue	Direct 571.9	% Diffuse 26.0	Operator Craig Webb	
Comments: [No	one]					
Session: 130						
Date 08-24-2021	Start Time 06:42:41	End Time 07:34:07	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 971.5 957.4	M (end) 970.9 956.9
Observations	:					
Time 07:07:08	Zenith 76.51	ASR Blue	Direct 581.4	% Diffuse 29.0	Operator Craig Webb	
Comments: some small c	louds in area,	temp 26C, hum ⁻	72%, hpa 975, wn	d dir 090 @ 4 m	ıph	
Time 07:28:09	Zenith 72.31	ASR Blue	Direct 582.0	% Diffuse 30.2	Operator Craig Webb	
Comments: [No	one] ========					
Session: 131						
Date 08-24-2021	Start Time 08:55:24	End Time 09:58:26	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 969.5 955.9	M (end) 968.3 955.1
Observations	:					
Time 09:30:10	Zenith 48.31	ASR Blue	Direct 868.9	% Diffuse 11.2	Operator Craig Webb	
Comments: clouds cleare	ed so started u	p again. temp 3	33c, hum 47%, hpa	a 975 wnd dir 0	780 15 mph.	
Time 09:53:13	Zenith 44.05	ASR Blue	Direct 871.4	% Diffuse 10.9	Operator Craig Webb	
Comments: [No	one]					
Session: 132						
Date 08-24-2021	Start Time 09:58:26	End Time 10:59:28	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 968.3 955.1	M (end) 967.5 954.0
Observations	:					
Time 10:34:59	Zenith 36.88	ASR Blue	Direct 890.2	% Diffuse 10.4	Operator Craig Webb	
Comments: temp 36C, hur	m 38%, hpa 975,	wnd dir 150 @	16 mph.			
======================================						
Date 08-24-2021	Start Time 10:59:28	End Time 11:59:30	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 967.5 954.0	M (end) 966.7 953.5

Observations	:					
Time 11:12:54	Zenith 31.35	ASR Brown	Direct 915.4	% Diffuse 9.5	Operator Craig Webb	
Comments: some light c	louds in area,	temp 36C, hum 3	5%, hpa 975, wno	d dir 152 @ 24	mph.	
Time 11:40:03	Zenith 28.32	ASR Blue	Direct 925.5	% Diffuse 9.0	Operator Craig Webb	
Comments: [No	one]					
Session: 134						
Date 08-24-2021	Start Time 11:59:30	End Time 12:59:30	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 966.7 953.5	M (end) 966.2 952.8
Observations	:					
Time 12:02:18	Zenith 26.63	ASR Green	Direct 930.4	% Diffuse 8.7	Operator Craig Webb	
Comments: clouds to the	e east, temp 370	C, hum 32%, hpa	974, wnd dir 14	45 @ 21 mph.		
Time 12:36:05	Zenith 25.78	ASR Red	Direct 932.0	% Diffuse 8.7	Operator Craig Webb	
Comments: [No	one]					
Session: 135						
Date 08-24-2021	Start Time 12:59:30	End Time 14:01:34	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 966.2 952.8	M (end) 966.2 952.9
Observations	:					
Time 13:34:02	Zenith 29.32	ASR Blue	Direct 909.3	% Diffuse 9.6	Operator Craig Webb	
Comments: [No	one]					
Session: 136						
Date 08-24-2021	Start Time 14:01:34	End Time 15:03:34	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 966.2 952.9	M (end) 965.5 952.5
Observations	:					
Time 14:02:38	Zenith 32.87	ASR Blue	Direct 897.6	% Diffuse 10.3	Operator Craig Webb	
Comments: clear and win	ndy, temp 38C, 1	num 33%, hpa 97	4, wnd dir 121 (ð 27 mph.		
Time 14:44:07	Zenith 39.35	ASR Green	Direct 866.1	% Diffuse 11.7	Operator Craig Webb	
Comments: [No	one]					
Session: 137						
Date 08-24-2021	Start Time 15:03:34	End Time 16:00:35	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 965.5 952.5	M (end) 966.0 952.4

Observations	:					
Time 15:32:16	Zenith 47.99	ASR Blue	Direct 845.6	% Diffuse 12.6	Operator Craig Webb	
Comments: clouds to the	e south west, to	emp 38C, hum 32	2%, hpa 974, wnd	dir 132 @ 20 m	ph.	
Time 15:54:55	Zenith 52.30	ASR Blue	Direct 824.8	% Diffuse 13.3	Operator Craig Webb	
Comments: [No	one]					
Session: 138						
Date 08-24-2021	Start Time 16:00:35	End Time 17:00:38	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 966.0 952.4	M (end) 965.7 952.2
Observations	:					
Time 16:15:08	Zenith 56.23	ASR Blue	Direct 803.3	% Diffuse 14.4	Operator Craig Webb	
Comments: clouds to the	e west and sout	n, temp 38C, hu	um 33%, hpa 973,	wnd dir 156 @	24 mph.	
Time 16:35:36	Zenith 60.26	ASR Blue	Direct 760.5	% Diffuse 16.1	Operator Craig Webb	
Comments: [No	one] ====================================					
Session: 139						
Date 08-24-2021	Start Time 17:00:38	End Time 17:47:33	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 965.7 952.2	M (end) 965.9 952.6
Observations:	:					
Time 17:01:21	Zenith 65.40	ASR Blue	Direct 718.3	% Diffuse 18.4	Operator Craig Webb	
Comments: clouuds to th	ne siuth and we	st, temp 37C, 1	num 36%, hpa 973	, wnd dir 160 @	21 mph.	
Time 17:42:48	Zenith 73.69	ASR Blue	Direct 589.4	% Diffuse 25.3	Operator Craig Webb	
Comments: will be quit: be gone thurs	ing in a few min sday and friday	nutes, it wil:	l be sunny angai.	n tomorrow and	I will come in a	nd run, but I will
Time 17:44:32	Zenith 74.05	ASR Blue	Direct 577.1	% Diffuse 25.6	Operator Craig Webb	
Comments: [No	one]					
Session: 140						
Date 08-25-2021	Start Time 06:32:04	End Time 07:35:06	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 971.1 956.6	M (end) 970.1 956.6
Observations	:					
Time 06:55:39	Zenith 78.93	ASR Blue	Direct 477.2	% Diffuse 32.8	Operator Craig Webb	

Comments: clouds to the	west and sout	rh, temp 25C, h	um 83%, hpa 978	, wnd dir 110 @	3 mph.	
Session: 141						
Date 08-25-2021	Start Time 07:35:06	End Time 08:35:09	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 970.1 956.6	M (end) 969.4 955.2
Observations:	[None]					
Session: 142						
Date 08-25-2021	Start Time 08:35:09	End Time 09:38:11	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 969.4 955.2	M (end) 968.3 954.8
Observations:						
Time 09:28:33	Zenith 48.78	ASR Brown	Direct 802.9	% Diffuse 15.6	Operator Craig Webb	
Comments: some small cl	ouds in area,	temp 34C, hum 4	9%, hpa 979, wno	d dir 136 @ 6 m		
======================================						
Date 08-25-2021	Start Time 09:38:11	End Time 10:38:14	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 968.3 954.8	M (end) 967.4 954.2
Observations:						
 Time 10:18:18	Zenith 39.84	ASR Blue	Direct 867.8	% Diffuse 12.4	Operator Craig Webb	
Comments: some light cl	ouds, temp 36C	, hum 43%, hpa	079, wnd dir 163	3 @ 10 m[h.		
======================================						
Date 08-25-2021	Start Time 10:38:14	End Time 11:38:16	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 967.4 954.2	M (end) 966.2 953.4
Observations:						
Time 10:48:26	Zenith 35.01	ASR Green	Direct 876.8	% Diffuse 15.2	Operator Craig Webb	
Comments: clouds moving	into the area	, temp 37C, hum	41%, hpa 979, v	wnd dir 183 @ 6	mph.	
Time 11:31:52	Zenith 29.42	ASR Green	Direct 886.2	% Diffuse 11.6	Operator Craig Webb	
Comments: [No	ne]					
Session: 145						
Date 08-25-2021	Start Time 11:38:16	End Time 12:07:15	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 966.2 953.4	M (end) 966.2 953.2
Observations:						
Time 11:53:33	Zenith 27.51	ASR Green	Direct 885.2	* Diffuse 11.4	Operator Craig Webb	

.551011. 140						
ate 3-25-2021	Start Time 12:07:15	End Time 13:07:17	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 966.2 953.2	M (end) 965.9 952.7
oservations:						
ime 2:18:40	Zenith 26.28	ASR Blue	Direct 893.7	% Diffuse 10.8	Operator Craig Webb	
omments: olar noon co	omming up, temp	38C, hum 37%,	hpa 978, wnd di	c 114 @ 6 mph.		
ime 2:59:42	Zenith 26.86	ASR Green	Direct 890.0	% Diffuse 10.7	Operator Craig Webb	
omments: [No	one]					
ession: 147						
ate 3-25-2021	Start Time 13:07:17	End Time 14:06:18	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 965.9 952.7	M (end) 965.6 952.7
oservations:	:					
ime 3:26:07	Zenith 28.85	ASR Blue	Direct 891.7	% Diffuse 10.7	Operator Craig Webb	
omments: ome clouds i	in the area, ter	mp 39C, hum 33 [;]	%, hpa 978, wnd d	dir 140 @ 7 mph		
ession: 148						
ate 3-25-2021	Start Time 14:06:18	End Time 15:06:19	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 965.6 952.7	M (end) 965.4 952.4
ate 3-25-2021 oservations:	Start Time 14:06:18	End Time 15:06:19	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 965.6 952.7	M (end) 965.4 952.4
ate 3-25-2021 oservations: 	Start Time 14:06:18 Zenith 34.04	End Time 15:06:19 ASR Blue	Cavity S/N 29222 30495 Direct 865.3	Setup 06:15 06:15 % Diffuse 11.6	M (beg) 965.6 952.7 Operator Craig Webb	M (end) 965.4 952.4
ate 3-25-2021 oservations: ime 4:08:33 omments: ome clouds i	Start Time 14:06:18 Zenith 34.04	End Time 15:06:19 ASR Blue 9C, hum 32%, hj	Cavity S/N 29222 30495 Direct 865.3 pa 977, wnd dir 1	Setup 06:15 06:15 % Diffuse 11.6	M (beg) 965.6 952.7 Operator Craig Webb	M (end) 965.4 952.4
ate 3-25-2021 oservations: ime 1:08:33 omments: ome clouds i ime 1:32:39	Start Time 14:06:18 Zenith 34.04 In area, temp 3 Zenith 37.75	End Time 15:06:19 ASR Blue 9C, hum 32%, hj ASR Blue	Cavity S/N 29222 30495 Direct 865.3 pa 977, wnd dir 1 Direct 864.9	Setup 06:15 06:15 % Diffuse 11.6 117 @ 12 mph. % Diffuse 11.6	M (beg) 965.6 952.7 Operator Craig Webb Operator Craig Webb	M (end) 965.4 952.4
ate 3-25-2021 oservations: ime 1:08:33 omments: ome clouds i ime 1:32:39 omments: [No	Start Time 14:06:18 Zenith 34.04 In area, temp 3 Zenith 37.75 Dne]	End Time 15:06:19 ASR Blue 9C, hum 32%, hp ASR Blue	Cavity S/N 29222 30495 Direct 865.3 pa 977, wnd dir : Direct 864.9	Setup 06:15 06:15 % Diffuse 11.6 117 @ 12 mph. % Diffuse 11.6	M (beg) 965.6 952.7 Operator Craig Webb Operator Craig Webb	M (end) 965.4 952.4
ate 3-25-2021 oservations: ime 4:08:33 omments: ome clouds i ime 4:32:39 omments: [No	Start Time 14:06:18 Zenith 34.04 In area, temp 3 Zenith 37.75 Dne]	End Time 15:06:19 ASR Blue 9C, hum 32%, hp ASR Blue	Cavity S/N 29222 30495 Direct 865.3 pa 977, wnd dir 3 Direct 864.9	Setup 06:15 06:15 % Diffuse 11.6 117 @ 12 mph. % Diffuse 11.6	M (beg) 965.6 952.7 Operator Craig Webb Operator Craig Webb	M (end) 965.4 952.4
ate 3-25-2021 oservations: ime 4:08:33 omments: ome clouds i ime 4:32:39 omments: [No ession: 149 ate 3-25-2021	Start Time 14:06:18 Zenith 34.04 In area, temp 3 Zenith 37.75 one] Start Time 15:06:19	End Time 15:06:19 ASR Blue 9C, hum 32%, hy ASR Blue End Time 16:07:21	Cavity S/N 29222 30495 Direct 865.3 pa 977, wnd dir 2 Direct 864.9 Cavity S/N 29222 30495	Setup 06:15 06:15 % Diffuse 11.6 % Diffuse 11.6 % Diffuse 11.6 Setup 06:15 06:15	M (beg) 965.6 952.7 Operator Craig Webb Operator Craig Webb M (beg) 965.4 952.4	M (end) 965.4 952.4 M (end) 965.3 952.0
ate 3-25-2021 oservations: ime 1:08:33 omments: ime 1:32:39 omments: [No ession: 149 ate 3-25-2021	Start Time 14:06:18 Zenith 34.04 In area, temp 3 Zenith 37.75 one] Start Time 15:06:19	End Time 15:06:19 ASR Blue 9C, hum 32%, hy ASR Blue End Time 16:07:21	Cavity S/N 29222 30495 Direct 865.3 pa 977, wnd dir 1 Direct 864.9 Cavity S/N 29222 30495	Setup 06:15 06:15 % Diffuse 11.6 % Diffuse 11.6 % Diffuse 11.6 Setup 06:15 06:15	M (beg) 965.6 952.7 Operator Craig Webb Operator Craig Webb M (beg) 965.4 952.4	M (end) 965.4 952.4 M (end) 965.3 952.0
ate 3-25-2021 oservations: ime 4:08:33 omments: ome clouds in ime 4:32:39 omments: [No ession: 149 ate 3-25-2021 oservations: ime 5:06:40	Start Time 14:06:18 Zenith 34.04 Zenith 37.75 Dne] Start Time 15:06:19 Zenith 43.58	End Time 15:06:19 ASR Blue 9C, hum 32%, hp ASR Blue End Time 16:07:21 ASR Blue	Cavity S/N 29222 30495 Direct 865.3 pa 977, wnd dir : Direct 864.9 Cavity S/N 29222 30495 Direct 844.4	Setup 06:15 06:15 % Diffuse 11.6 % Diffuse 11.6 Setup 06:15 06:15 % Diffuse 12.7	M (beg) 965.6 952.7 Operator Craig Webb Operator Craig Webb M (beg) 965.4 952.4 Operator Craig Webb	M (end) 965.4 952.4

Session: 150						
Date 08-25-2021	Start Time 16:07:21	End Time 17:08:24	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 965.3 952.0	M (end) 965.3 952.1
Observations	: [None]					
Session: 151						
Date 08-25-2021	Start Time 17:08:24	End Time 17:54:24	Cavity S/N 29222 30495	Setup 06:15 06:15	M (beg) 965.3 952.1	M (end) 965.7 952.1
Observations	:					
Time 17:46:45	Zenith 74.74	ASR Blue	Direct 534.0	% Diffuse 28.8	Operator Craig Webb	
Comments: closing down	temp-37C, hum	40%, mhpa 976,	wnd dir 150 @ 7	mph.		
Time 17:51:03	Zenith 75.60	ASR Blue	Direct 528.8	% Diffuse 29.4	Operator Craig Webb	
Comments:						

cquiting for the night.