Broadband Outdoor Radiometer Calibration Longwave

BORCAL-LW 2021-02

Radiometer Calibration and Characterization

Calibration Facility Southern Great Plains

Latitude: 36.605°N Longitude: 97.488°W Elevation: 317.0 meters AMSL Time Zone: -6.0

Calibration date 06/23/2021 to 08/11/2021

Report Date August 11, 2021

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Broadband Outdoor Radiometer Calibration Report

Table of contents

Introduction	3
Control Instrument history plots	4
Results summary	5
Appendix 1 Instrument Details	A1-1
Appendix 2 BORCAL Notes	A2-1
Appendix 3 Session Configuration Audit Report	A3-1

Introduction

This report compiles the calibration results from a Broadband Outdoor Radiometer Calibration (BORCAL). The work was accomplished at the Radiometer Calibration Facility shown on the front of this report. The calibration results reported here are traceable to the World Infrared Standard Group (WISG).

This report includes these sections:

- Control Instruments a group of instruments included in each BORCAL event that provides a measure of process consistency.
- Results Summary a table of all instruments included in this report summarizing their calibration results and uncertainty.
- Instrument Details the calibration certificates for each instrument.
- Environmental and Sky Conditions meteorological conditions and reference irradiance during the calibration event.

Control Instrument History

BORCAL-LW 2021-02 / Full Report

Results Summary

Table 1. Results Summary

		K1	K2	K3	Kr *	U95	
Instrument	Customer	(W/m²/µV)			(K/µV)	(W/m²)	Page
29148F3	SGP	0.24148	1.0026	-3.08	7.044e-4	±2.7	A1-2
29593F3	SGP	0.22685	1.0012	-3.58	7.044e-4	±2.7	A1-5
29595F3	SGP	0.21131	1.0053	-3.38	7.044e-4	±2.6	A1-8
30133F3	SGP	0.24106	1.0024	-3.06	7.044e-4	±2.7	A1-11
30682F3	SGP	0.23764	1.0012	-3.32	7.044e-4	±2.7	A1-14
30835F3	SGP	0.22723	0.9985	-3.33	7.044e-4	±2.6	A1-17
31391F3	TWP	0.24580	0.9972	-3.13	7.044e-4	±2.6	A1-20
32049F3	SGP	0.23574	1.0026	-3.26	7.044e-4	±2.6	A1-23
33057F3	TWP	0.25021	0.9971	-3.50	7.044e-4	±2.7	A1-26
33058F3	TWP	0.23867	0.9966	-3.03	7.044e-4	±2.6	A1-29
36368F3	SGP	0.27329	1.0087	-3.97	7.044e-4	±2.7	A1-32
37336F3	NSA	0.23325	0.9986	-3.83	7.044e-4	±2.6	A1-35
37339F3	NSA	0.21796	0.9941	-4.83	7.044e-4	±2.7	A1-38

Note: Environmental Conditions for BORCAL starts on page A1-41.

* Kr used to derive coefficients

Appendix 1 Instrument Details

Calibration Certificates: 3 pages for each radiometer (4 including Environmental Conditions) Environmental Conditions for BORCAL: Last Page of a Calibration Certificate. Note: This appears only once, at the end of Appendix 1.

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	29148F3
Calibration Date:	8/11/2021	Due Date:	8/11/2023
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	6/23-25, 6/27-28, 6/30, 7/1-31, 8/1-11		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/27/2021	04/27/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31206F3	02/19/2020	02/19/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31237F3	02/19/2020	02/19/2022

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 29148F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

Win = K1*V + K2*Wr + K3*(Wd - Wr)

[1]

where,

<i>K1,K2,K3</i> = calibration coefficeints,	$Wr = \sigma * Tr^4 =$ receiver irradiance (W/m ²),
V = thermopile output voltage (μV),	where, $\sigma = 5.6704 \text{e-8 W} \text{m-2} \text{-} \text{K-4}$,
$Wd = \sigma * Td^4 = \text{dome irradiance (W/m^2)},$	Tr = Tc + Kr * V = receiver temperature (K),
where, Td = dome temperature (K),	<i>Tc</i> = case temperature (K),
	Kr = efficiency coefficient (K/ μ V).

Figure 1. Residuals for calculated using coefficients vs reference irradiance

Table 1.	Calibration	Coefficients
----------	-------------	--------------

К1	0.24148
К2	1.0026
КЗ	-3.08
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.3
Type-A Standard Uncertainty, u(A) (W/m²)	±0.43
Combined Standard Uncertainty, u(c) (W/m ²)	±1.4
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.7

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	29593F3
Calibration Date:	8/11/2021	Due Date:	8/11/2023
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	6/23-25, 6/27-28, 6/30, 7/1-31, 8/1-11		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/27/2021	04/27/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31206F3	02/19/2020	02/19/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31237F3	02/19/2020	02/19/2022

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 29593F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

K1 K2 K3 = calibration coefficeints	$W/r = \sigma * Tr^4 = receiver irradiance (W/m^2)$
= thermonile output voltage (u)/)	where $\sigma = 5.6704 + 8$ W/m 2/K 4
$v = \text{thermopile output voltage }(\mu v),$	where, $0 = 5.0704250$ with 2 K-4,
$vva = \sigma^{-1} a^{-4} = \text{dome irradiance } (vv/m^2),$	$Tr = TC + Kr^{+}V^{-} = receiver temperature (K),$
where, $Td = dome temperature (K),$	<i>Tc</i> = case temperature (K),
	Kr = efficiency coefficient (K/ μ V).

Figure 1. Residuals for calculated using coefficients vs reference irradiance

Table 1. Calibration Coefficients

К1	0.22685
К2	1.0012
КЗ	-3.58
Kr used to derive coefficients	7.044e-4
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.3
Type-A Standard Uncertainty, u(A) (W/m²)	±0.40
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.4
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.7

Figure 2. History of instrument (Residual means of current data using historical BORCAL coefficients)

References:

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	29595F3
Calibration Date:	8/11/2021	Due Date:	8/11/2023
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	6/23-25, 6/27-28, 6/30, 7/1-31, 8/1-11		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/27/2021	04/27/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31206F3	02/19/2020	02/19/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31237F3	02/19/2020	02/19/2022

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 29595F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

K1 K2 K3 = calibration coefficeints	$Wr = \sigma * Tr^4 =$ receiver irradiance (W/m ²)
V = thermopile output voltage (µV).	where, $\sigma = 5.6704e-8$ W·m-2·K-4,
$Wd = \sigma * Td^4 = \text{dome irradiance (W/m^2)},$	Tr = Tc + Kr * V = receiver temperature (K),
where, Td = dome temperature (K),	Tc = case temperature (K),
	Kr = efficiency coefficient (K/ μ V).

Figure 1. Residuals for calculated using coefficients vs reference irradiance

Table 1. Calibration Coefficients

К1	0.21131
К2	1.0053
КЗ	-3.38
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.3
Type-A Standard Uncertainty, u(A) (W/m²)	±0.36
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.3
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.6

Figure 2. History of instrument (Residual means of current data using historical BORCAL coefficients)

References:

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	30133F3
Calibration Date:	8/11/2021	Due Date:	8/11/2023
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	6/23-25, 6/27-28, 6/30, 7/1-31, 8/1-11		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/27/2021	04/27/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31206F3	02/19/2020	02/19/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31237F3	02/19/2020	02/19/2022

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 30133F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

K1.K2.K3 = calibration coefficeints.	$Wr = \sigma * Tr^4 =$ receiver irradiance (W/m ²),
V = thermopile output voltage (μ V),	where, $\sigma = 5.6704e-8 \text{ W}\cdot\text{m}-2\cdot\text{K}-4$,
$Wd = \sigma * Td^4 = \text{dome irradiance (W/m^2)},$	Tr = Tc + Kr * V = receiver temperature (K),
where, $Td =$ dome temperature (K),	<i>Tc</i> = case temperature (K),
	Kr = efficiency coefficient (K/ μ V).

Table 1. Calibration Coefficients

К1	0.24106
К2	1.0024
КЗ	-3.06
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.3
Type-A Standard Uncertainty, u(A) (W/m²)	±0.51
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.4
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.7

Figure 2. History of instrument (Residual means of current data using historical BORCAL coefficients)

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	30682F3
Calibration Date:	8/11/2021	Due Date:	8/11/2023
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	6/23-25, 6/27-28, 6/30, 7/1-31, 8/1-11		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/27/2021	04/27/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31206F3	02/19/2020	02/19/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31237F3	02/19/2020	02/19/2022

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 30682F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

K1 K2 K3 = calibration coefficeints	$W/r = \sigma * Tr^4 = receiver irradiance (W/m^2)$
= thermonile output voltage (u)/)	where $\sigma = 5.6704 + 8$ W/m 2/K 4
$v = \text{thermopile output voltage }(\mu v),$	where, $0 = 5.0704250$ with 2 K-4,
$vva = \sigma^{-1} a^{-4} = \text{dome irradiance } (vv/m^2),$	$Tr = TC + Kr^{+}V^{-} = receiver temperature (K),$
where, $Td = dome temperature (K),$	<i>Tc</i> = case temperature (K),
	Kr = efficiency coefficient (K/ μ V).

Figure 1. Residuals for calculated using coefficients vs reference irradiance

Table 1.	Calibration	Coefficients
----------	-------------	--------------

К1	0.23764
К2	1.0012
КЗ	-3.32
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.3
Type-A Standard Uncertainty, u(A) (W/m²)	±0.42
Combined Standard Uncertainty, u(c) (W/m ²)	±1.4
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.7

Figure 2. History of instrument (Residual means of current data using historical BORCAL coefficients)

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	30835F3
Calibration Date:	8/11/2021	Due Date:	8/11/2023
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	6/23-25, 6/27-28, 6/30, 7/1-31, 8/1-11		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/27/2021	04/27/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31206F3	02/19/2020	02/19/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31237F3	02/19/2020	02/19/2022

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 30835F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

Win = K1*V + K2*Wr + K3*(Wd - Wr)

[1]

where,

K1.K2.K3 = calibration coefficeints.	$Wr = \sigma * Tr^4 =$ receiver irradiance (W/m ²),
V = thermopile output voltage (μ V),	where, $\sigma = 5.6704e-8 \text{ W}\cdot\text{m}-2\cdot\text{K}-4$,
$Wd = \sigma * Td^4 = \text{dome irradiance (W/m^2)},$	Tr = Tc + Kr * V = receiver temperature (K),
where, $Td =$ dome temperature (K),	<i>Tc</i> = case temperature (K),
	Kr = efficiency coefficient (K/ μ V).

Figure 1. Residuals for calculated using coefficients vs reference irradiance

Table 1.	Calibration	Coefficients
----------	-------------	--------------

К1	0.22723
К2	0.9985
КЗ	-3.33
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.3
Type-A Standard Uncertainty, u(A) (W/m²)	±0.36
Combined Standard Uncertainty, u(c) (W/m ²)	±1.3
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.6

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	31391F3
Calibration Date:	8/11/2021	Due Date:	8/11/2023
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	6/23-25, 6/27-28, 6/30, 7/1-31, 8/1-11		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/27/2021	04/27/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31206F3	02/19/2020	02/19/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31237F3	02/19/2020	02/19/2022

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 31391F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

K1, K2, K3 = calibration coefficeints,	$Wr = \sigma * Tr^4 =$ receiver irradiance (W/m ²),
V = thermopile output voltage (μ V),	where, $\sigma = 5.6704e-8 \text{ W}\cdot\text{m}-2\cdot\text{K}-4$,
$Wd = \sigma * Td^4 = \text{dome irradiance (W/m^2)},$	Tr = Tc + Kr * V = receiver temperature (K),
where, $Td = dome temperature (K),$	<i>Tc</i> = case temperature (K),
	Kr = efficiency coefficient (K/ μ V).

Table 1. Calibration Coefficients	Table 1.	Calibration	Coefficients
-----------------------------------	----------	-------------	--------------

К1	0.24580
К2	0.9972
КЗ	-3.13
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.3
Type-A Standard Uncertainty, u(A) (W/m²)	±0.34
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.3
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.6

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	32049F3
Calibration Date:	8/11/2021	Due Date:	8/11/2023
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	6/23-25, 6/27-28, 6/30, 7/1-31, 8/1-11		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/27/2021	04/27/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31206F3	02/19/2020	02/19/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31237F3	02/19/2020	02/19/2022

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 32049F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

Win = K1*V + K2*Wr + K3*(Wd - Wr)

[1]

where,

K1 K2 K3 = calibration coefficeints	$Wr = \sigma * Tr^4 =$ receiver irradiance (W/m ²)
V = thermopile output voltage (uV).	where $\sigma = 5.6704e-8$ W·m-2·K-4
$Wd = \sigma * Td^4 = \text{dome irradiance } (W/m^2).$	Tr = Tc + Kr * V = receiver temperature (K).
where, Td = dome temperature (K),	Tc = case temperature (K),
	Kr = efficiency coefficient (K/µV).

Figure 1. Residuals for calculated using coefficients vs reference irradiance

Table 1. Calibration Coefficients

К1	0.23574
К2	1.0026
КЗ	-3.26
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.3
Type-A Standard Uncertainty, u(A) (W/m²)	±0.35
Combined Standard Uncertainty, u(c) (W/m ²)	±1.3
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.6

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	33057F3
Calibration Date:	8/11/2021	Due Date:	8/11/2023
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	6/23-25, 6/27-28, 6/30, 7/1-31, 8/1-11		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/27/2021	04/27/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31206F3	02/19/2020	02/19/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31237F3	02/19/2020	02/19/2022

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 33057F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

Win = K1*V + K2*Wr + K3*(Wd - Wr)

[1]

where,

<i>K1,K2,K3</i> = calibration coefficeints,	$Wr = \sigma * Tr^4 =$ receiver irradiance (W/m ²),
V = thermopile output voltage (μV),	where, $\sigma = 5.6704 \text{e-8 W} \text{m-2} \text{-} \text{K-4}$,
$Wd = \sigma * Td^4 = \text{dome irradiance (W/m^2)},$	Tr = Tc + Kr * V = receiver temperature (K),
where, Td = dome temperature (K),	<i>Tc</i> = case temperature (K),
	Kr = efficiency coefficient (K/ μ V).

Table 1.	Calibration	Coefficients
----------	-------------	--------------

K1	0.25021
К2	0.9971
К3	-3.50
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.3
Type-A Standard Uncertainty, u(A) (W/m²)	±0.42
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.4
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.7

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	33058F3
Calibration Date:	8/11/2021	Due Date:	8/11/2023
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	6/23-25, 6/27-28, 6/30, 7/1-31, 8/1-11		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/27/2021	04/27/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31206F3	02/19/2020	02/19/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31237F3	02/19/2020	02/19/2022

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 33058F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

<i>K1,K2,K3</i> = calibration coefficeints,	$Wr = \sigma * Tr^4 =$ receiver irradiance (W/m ²),
V = thermopile output voltage (μ V),	where, $\sigma = 5.6704e$ -8 W·m-2·K-4,
$Wd = \sigma * Td^4 = \text{dome irradiance (W/m^2)},$	Tr = Tc + Kr * V = receiver temperature (K),
where, $Td =$ dome temperature (K),	<i>Tc</i> = case temperature (K),
	Kr = efficiency coefficient (K/µV).

Table 1.	Calibration	Coefficients
----------	-------------	--------------

К1	0.23867
К2	0.9966
КЗ	-3.03
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.3
Type-A Standard Uncertainty, u(A) (W/m²)	±0.37
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.4
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.6

Figure 2. History of instrument (Residual means of current data using historical BORCAL coefficients)

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	36368F3
Calibration Date:	8/11/2021	Due Date:	8/11/2023
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	6/23-25, 6/27-28, 6/30, 7/1-31, 8/1-11		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/27/2021	04/27/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31206F3	02/19/2020	02/19/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31237F3	02/19/2020	02/19/2022

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 36368F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

K1.K2.K3 = calibration coefficeints.	$Wr = \sigma * Tr^4 =$ receiver irradiance (W/m ²),
V = thermopile output voltage (μ V),	where, $\sigma = 5.6704e-8 \text{ W}\cdot\text{m}-2\cdot\text{K}-4$,
$Wd = \sigma * Td^4 = \text{dome irradiance (W/m^2)},$	Tr = Tc + Kr * V = receiver temperature (K),
where, $Td =$ dome temperature (K),	<i>Tc</i> = case temperature (K),
	Kr = efficiency coefficient (K/ μ V).

Figure 1. Residuals for calculated using coefficients vs reference irradiance

Table 1.	Calibration	Coefficients
----------	-------------	--------------

К1	0.27329
К2	1.0087
КЗ	-3.97
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.3
Type-A Standard Uncertainty, u(A) (W/m²)	±0.42
Combined Standard Uncertainty, u(c) (W/m ²)	±1.4
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.7

Figure 2. History of instrument (Residual means of current data using historical BORCAL coefficients)

^{-2.6-}2015-03 2015-05 2015-07 2016-02 2016-04 2016-06 2017-01 2017-03 2017-05 2018-01 2019-03 2019-05 2019-07 2020-02 2020-04 2020-06 2021-02 error bars = ±U(A)

Figure 5. History of instrument (K3 Coefficient)

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	37336F3
Calibration Date:	8/11/2021	Due Date:	8/11/2023
Customer:	NSA	Environmental Conditions:	see page 4
Test Dates:	6/23-25, 6/27-28, 6/30, 7/1-31, 8/1-11		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/27/2021	04/27/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31206F3	02/19/2020	02/19/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31237F3	02/19/2020	02/19/2022

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 37336F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

<i>K1,K2,K3</i> = calibration coefficeints,	$Wr = \sigma * Tr^4 =$ receiver irradiance (W/m ²),
V = thermopile output voltage (μ V),	where, $\sigma = 5.6704 \text{e-8 W} \cdot \text{m-2} \cdot \text{K-4}$,
$Wd = \sigma * Td^4 = \text{dome irradiance (W/m^2)},$	Tr = Tc + Kr * V = receiver temperature (K),
where, Td = dome temperature (K),	<i>Tc</i> = case temperature (K),
	Kr = efficiency coefficient (K/ μ V).

Figure 1. Residuals for calculated using coefficients vs reference irradiance

Table 1.	Calibration	Coefficients
----------	-------------	--------------

К1	0.23325
К2	0.9986
КЗ	-3.83
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.3
Type-A Standard Uncertainty, u(A) (W/m²)	±0.37
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.4
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.6

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	37339F3
Calibration Date:	8/11/2021	Due Date:	8/11/2023
Customer:	NSA	Environmental Conditions:	see page 4
Test Dates:	6/23-25, 6/27-28, 6/30, 7/1-31, 8/1-11		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	04/27/2021	04/27/2022
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	04/27/2021	04/27/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31206F3	02/19/2020	02/19/2022
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31237F3	02/19/2020	02/19/2022

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 37339F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

K1 K2 K3 = calibration coefficients	$Wr = \sigma * Tr^{4} = receiver irradiance (W/m^{2})$
(1,1,2,1,0) = calibration coefficients,	$W = 0$ $H \neq -$ receiver in adiatice (W/III),
$v = \text{thermopile output voltage } (\mu v),$	where, $\sigma = 5.0704e-8$ w m-2·K-4,
$Wd = \sigma * Td^4 = dome irradiance (W/m^2),$	Tr = Tc + Kr * V = receiver temperature (K),
where, $Td =$ dome temperature (K),	<i>Tc</i> = case temperature (K),
	Kr = efficiency coefficient (K/ μ V).

Figure 1. Residuals for calculated using coefficients vs reference irradiance

Table 1.	Calibration	Coefficients
----------	-------------	--------------

К1	0.21796
К2	0.9941
КЗ	-4.83
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.3
Type-A Standard Uncertainty, u(A) (W/m²)	±0.46
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.4
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.7

Figure 2. History of instrument (Residual means of current data using historical BORCAL coefficients)

Environmental and Sky Conditions for BORCAL-LW 2021-02

Calibration Facility: Southern Great Plains

Latitude: 36.605°N Longitude: 97.488°W

Elevation: 317.0 meters AMSL

Time Zone: -6.0

Reference Irradiance (hourly averages):

Meteorological Observations (hourly averages):

Table 6. Meteorological Observations

Observations	Mean	Min	Max
Temperature (°C)	23.58	15.88	31.65
Humidity (%)	89.33	62.25	100.04
Pressure (mBar)	N/A	N/A	N/A
Est. Precipitable Water Vapor (mm)	43.2	30.7	55.3

For other information about the calibration facility visit: <u>https://www.arm.gov/capabilities/observatories/sgp</u>

Appendix 2 BORCAL Notes

Instrument, Configuration, and Session Notes for the BORCAL

BORCAL Notes

Facility: Southern Great Plains Comments: Avg. Station Pressure and Temperature is for Tulsa, OK, which is used for the Solar Position Algorithm (SPA).

Appendix 3 Session Configuration Audit Report

Latest Session Configuration Audit Report for the BORCAL

BORCAL/LW 2021-02 Session Configuration Audit Report

Facility	Facility Abbrev.	Contact	Latitude	Longitude	Elevation (m)	Avg press (mbr)	Avg temp (C)	Time zone	ISO			
Southern Great Plains	SGP	Craig Webb	36.605	-97.488	317.0	992.0	15.0	-6.0				

	SYSTEM		
			Channel Junction Box Cable Location
	Analysis Rejection	Misc	Temperature: E0710026T Vaisala HMP155 T
% Error Inresholds TP(x) / TP(x-1) 25.0 Delta Thresholds Ref Pyg Stability 4.0 Temp(x) - Temp(x-1)/5.0 Hum(x) - Hum(x-1)/20.0 Bar(x) - Bar(x-1)/5.0 Thrm(x) - Temp(x)/10.0	Analysis Rejection Threshold 1 (Blue) J.000 Threshold 2 (Green) 4.000 Threshold 3 (Brown) 5.000 No. of Std. Dev. 3 Clock Reset Interval (m) 30 Warning Threshold (s) 0 Delta UT1 -0.200	Misc Scan Rate (s) 300 Uncert. Significant Figures Auto Mode Zenith Angle Afternoon Startup 94 Morning Shutdown 94 Solar Position Algorithm Delta T (s) 69.384 Atmos. Refraction (deg) 0.5667	239 Temp Scale 100 Humidity: E0710026H Vaisala HMP155 H 255 Hum Scale 100 Offset 0 Pressure: None Scale 0 Offset 0 GPS TIME RECIEVER SGP Symmetricom NTP Type Port Baud Parity Stop bits Data bits
			RS232 0 115200 0 1 8

[DATALOGGER													
	Logger/Relay				DMM				Communications					
Unit 0	0 2009-1206 NREL RAP-DAQ			MY420028	63 Agilent 3442	0A		Unit	Туре	Addr.	Board	Parity	Stop	Data
Unit 1	2009-120	7 NREL RAP-DA	L RAP-DAQ MY42002864 Agilent 34420A				DMM	0	GPIB	21	0	0	0	0
Unit 2	2009-1208 NREL RAP-DAQ MY42002866 Agilent 34420A				Relay	0	GPIB	24	1	0	0	0		
Unit 3	3 2014-1302 NREL RAP-DAQ SG42000596 Agilent 34420A					DMM	1	GPIB	22	0	0	0	0	
				11		11-14-2	Relay	1	GPIB	25	1	0	0	0
		Cal Date	04/27/2021		04/27/2021	04/27/2021	DMM	2	GPIB	23	0	0	0	0
		Cal Due Date	04/27/2022	04/27/2022	04/27/2022	04/27/2022	Relay	2	GPIB	26	1	0	0	0
Svetom	Offeete:	Volts DC (uV)	0.93	0.93	0.93	0.93	DMM	3	GPIB	1	0	0	0	0
Oystern	2-Wire	Res. (mOhms)	2680.00	2680.00	2680.00	2680.00	Relay	3	GPIB	4	1	0	0	0
	4-Wire	Res. (mOhms)	0.00	0.00	0.00	0.00								

08/11/2021 13:44

BORCAL/LW 2021-02 Session Configuration Audit Report

PYRGEOMETER REFERENCE INSTRUMENTS

Calibration Coefficients Und								Max Out					
Cal Date	Cal Due Date	K0	K1	K2	K3	Kr	(W/m^2)	(mV)	Channel	Junction Box	Cable	Location	Active
Pyrgeomet	er 1: 31206F3	Eppley PI	R (Ventilate	əd)									
02/19/2020	02/19/2022	0.00000	0.26576	0.99910	-3.67000	7.04400E-4	2.20	9	23		2	T5-2	
Pyrgeomete	er 1: Case 10K Te	emperature							19		2		
Pyrgeomete	r 1: Dome 10K T	emperature							27		2		
Pyrgeomet	er 2: 31237F3	Eppley PIF	R (Ventilate	ed)									
02/19/2020	02/19/2022	3.80000	0.22978	0.99080	-4.34000	7.04400E-4	2.30	9	71		2	T6-2	
Pyrgeomete	er 2: Case 10K Te	emperature							67		2		
Pyrgeomete	er 2: Dome 10K T	emperature							75		2		

08/11/2021 13:44

BORCAL/LW 2021-02 Session Configuration Audit Report

Serial Number / Model	Customer	Mfg RS	Ch	Box	Cable	Act	ISO	AIM	Stickr	Vent	Use	Kr	Location	Due
29148F3	SGP	3.6000	231		3	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	Т9-3	24
PIR	(Case 10K Temperature)		227		3									
	(Dome 10K Temperature)		235		3									
29593F3	SGP	4.1600	135		3	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T7-3	24
PIR	(Case 10K Temperature)		131		3									
	(Dome 10K Temperature)		139		3									
29595F3	SGP	4.4300	199		1	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T9-1	24
PIR	(Case 10K Temperature)		195		1									
	(Dome 10K Temperature)		203		1									
30133F3 ‡	SGP	3.9000	215		2	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T9-2	24
PIR	(Case 10K Temperature)		211		2									
	(Dome 10K Temperature)		219		2									
30682F3	SGP	3.9300	7		1	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T5-1	24
PIR	(Case 10K Temperature)		3		1									
	(Dome 10K Temperature)		11		1									
30835F3	SGP	4.0700	151		1	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T8-1	24
PIR	(Case 10K Temperature)		147		1									
	(Dome 10K Temperature)		155		1									
31391F3	TWP	3.7800	119		2	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T7-2	24
PIR	(Case 10K Temperature)		115		2									
	(Dome 10K Temperature)		123		2									
32049F3	SGP	3.8400	39		3	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T5-3	24
PIR	(Case 10K Temperature)		35		3									
	(Dome 10K Temperature)		43		3									
33057F3	TWP	3.8400	87		3	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T6-3	24
PIR	(Case 10K Temperature)		83		3									
	(Dome 10K Temperature)		91		3									
33058F3	TWP	3.8300	103		1	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T7-1	24
PIR	(Case 10K Temperature)		99		1									
	(Dome 10K Temperature)		107		1									
36368F3 ‡	SGP	3.0200	167		2	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T8-2	24
PIR	(Case 10K Temperature)		163		2									
	(Dome 10K Temperature)		171		2									
37336F3	NSA	3.9600	55		1	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T6-1	24
PIR	(Case 10K Temperature)		51		1									
	(Dome 10K Temperature)		59		1									
37339F3	NSA	4.4500	183		3	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T8-3	24
PIR	(Case 10K Temperature)		179		3									
	(Dome 10K Temperature)		187		3									

INSTRUMENTS

‡ Control Instrument