Broadband Outdoor Radiometer Calibration Longwave

BORCAL-LW 2020-04

Radiometer Calibration and Characterization

Calibration Facility Southern Great Plains

Latitude: 36.605°N Longitude: 97.488°W Elevation: 317.0 meters AMSL Time Zone: -6.0

Calibration date 08/05/2020 to 09/14/2020

Report Date September 17, 2020

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

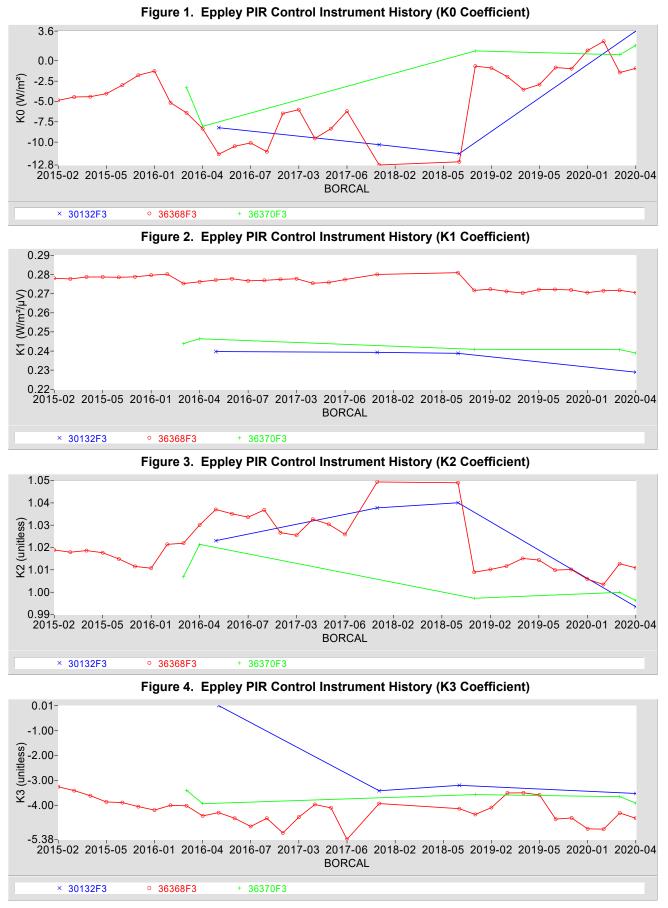
Broadband Outdoor Radiometer Calibration Report

Table of contents

Introduction	3
Control Instrument history plots	4
Results summary	5
Appendix 1 Instrument Details	A1-1
Appendix 2 BORCAL Notes	A2-1
Appendix 3 Session Configuration Audit Report	A3-1

Introduction

This report compiles the calibration results from a Broadband Outdoor Radiometer Calibration (BORCAL). The work was accomplished at the Radiometer Calibration Facility shown on the front of this report. The calibration results reported here are traceable to the World Infrared Standard Group (WISG).


This report includes these sections:

- Control Instruments a group of instruments included in each BORCAL event that provides a measure of process consistency.
- Results Summary a table of all instruments included in this report summarizing their calibration results and uncertainty.
- Instrument Details the calibration certificates for each instrument.
- Environmental and Sky Conditions meteorological conditions and reference irradiance during the calibration event.

BORCAL Notes or Comments

Due to data quality problems the following PIRs (although tested) were removed from this report. 31309F3, 30830F3, 29665F3,29924F3, 30011F3, 30032F3, 31236F3, 31298F3, 31303F3. See the TM for additional details.

Control Instrument History

BORCAL-LW 2020-04 / Full Report

Results Summary

Instrument 29146F3	Customer	K0	K1	K2	K3	Kr *	U95	
	Customer						000	
29146F3		(W/m²)	(W/m²/µV)			(K/µV)	(W/m²)	Page
	SGP	4.4	0.24375	0.9979	-3.64	7.044e-4	±3.1	A1-2
29591F3	SGP	-0.3	0.21856	1.0005	-3.50	7.044e-4	±3.1	A1-5
30012F3	TWP	4.1	0.26579	0.9926	-3.43	7.044e-4	±3.1	A1-8
30085F3	SGP	-2.7	0.23128	1.0061	-4.99	7.044e-4	±3.2	A1-11
30131F3	TWP	0.3	0.23978	1.0003	-4.20	7.044e-4	±3.2	A1-14
30132F3	SGP	3.6	0.22897	0.9934	-3.53	7.044e-4	±3.1	A1-17
30167F3	TWP	5.6	0.20815	0.9893	-4.10	7.044e-4	±3.2	A1-20
30168F3	NSA	3.5	0.36313	0.9879	-4.14	7.044e-4	±3.2	A1-23
30357F3	SGP	0.3	0.23316	0.9986	-4.06	7.044e-4	±3.1	A1-26
30681F3	SGP	4.3	0.24572	0.9859	-4.03	7.044e-4	±3.1	A1-29
30690F3	SGP	-3.5	0.24469	1.0053	-3.34	7.044e-4	±3.1	A1-32
30692F3	SGP	0.5	0.25031	0.9981	-3.59	7.044e-4	±3.1	A1-35
30781F3	SGP	1.0	0.27043	0.9936	-3.51	7.044e-4	±3.2	A1-38
30828F3	SGP	2.9	0.21399	0.9921	-3.32	7.044e-4	±3.1	A1-41
30834F3	SGP	-1.1	0.24175	1.0062	-4.26	7.044e-4	±3.1	A1-44
30836F3	SGP	4.0	0.23229	0.9898	-3.42	7.044e-4	±3.2	A1-47
31299F3	NSA	-0.8	0.22366	0.9894	-4.08	7.044e-4	±3.2	A1-50
31301F3	TWP	3.9	0.26345	0.9917	-4.02	7.044e-4	±3.2	A1-53
31302F3	TWP	2.1	0.25715	0.9947	-3.99	7.044e-4	±3.2	A1-56
31308F3	TWP	-5.6	0.29830	1.0093	-3.51	7.044e-4	±3.1	A1-59
31311F3	TWP	-1.8	0.24196	1.0006	-3.30	7.044e-4	±3.1	A1-62
31640F3	SGP	1.4	0.24029	0.9952	-3.84	7.044e-4	±3.2	A1-65
32040F3	NSA	3.6	0.24167	0.9904	-3.86	7.044e-4	±3.1	A1-68
32050F3	NSA	1.5	0.22987	0.9948	-3.39	7.044e-4	±3.1	A1-71
36363F3	SGP	-2.5	0.33042	1.0098	-4.60	7.044e-4	±3.2	A1-74
36368F3	SGP	-0.9	0.27052	1.0109	-4.52	7.044e-4	±3.2	A1-77
36370F3	SGP	1.9	0.23899	0.9962	-3.91	7.044e-4	±3.1	A1-80

Table 1. Results Summary

Note: Environmental Conditions for BORCAL starts on page A1-83.

 * Kr used to derive K0,K1,K2, and K3

Appendix 1 Instrument Details

Calibration Certificates: 3 pages for each radiometer (4 including Environmental Conditions) Environmental Conditions for BORCAL: Last Page of a Calibration Certificate. Note: This appears only once, at the end of Appendix 1.

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	29146F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 29146F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

 $\begin{array}{ll} Wr = \sigma * Tr^{A} = \text{receiver irradiance (W/m^{2}),} \\ \text{where,} & \sigma = 5.6704\text{e-8} \ \text{W}\cdot\text{m-2}\cdot\text{K-4}, \\ & Tr = Tc + Kr * V = \text{receiver temperature (K),} \\ & Tc = \text{case temperature (K),} \\ & Kr = \text{efficiency coefficient (K/\muV).} \end{array}$

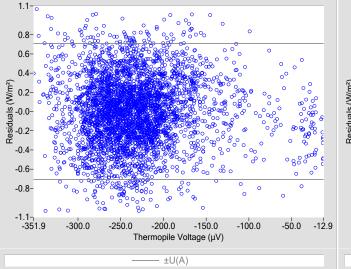
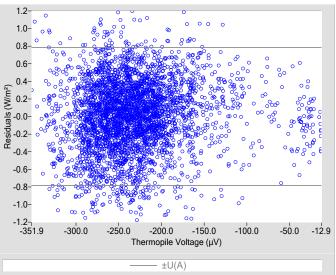


Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

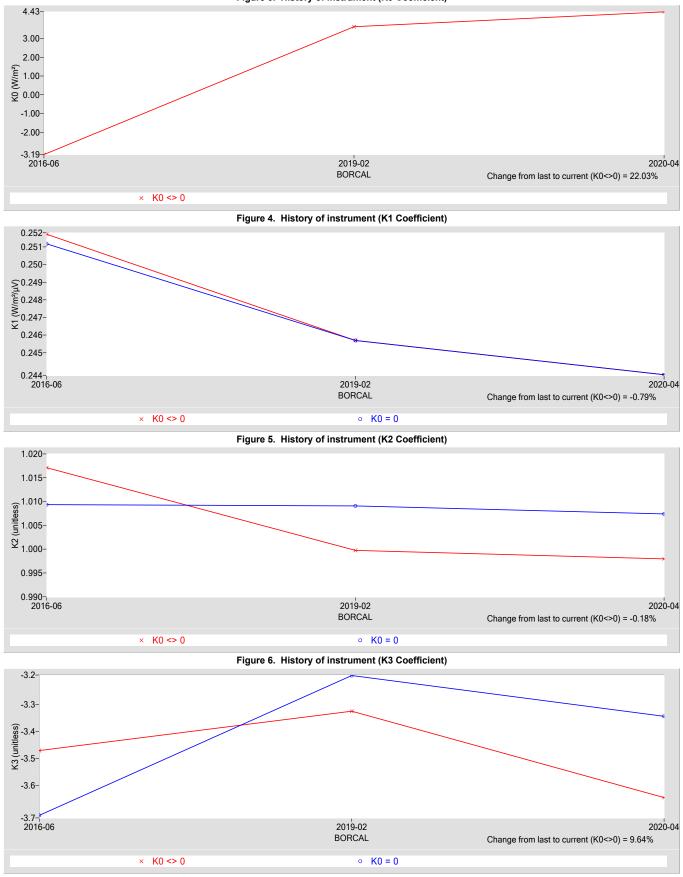

Table 2. Calibration Coefficients for K0<>0

KO	4.4
К1	0.24375
К2	0.9979
К3	-3.64
Kr used to derive coefficients	7.044e-4

Table 4. Uncertainty using K0<>0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.36
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.1

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients


Table 3. Calibration Coefficients for K0=0

K0	0.0
K1	0.24375
К2	1.0074
К3	-3.34
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.40
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.2

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	29591F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 29591F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

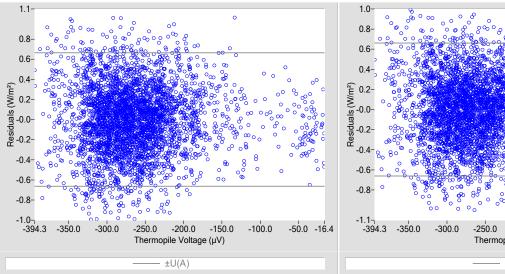
 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

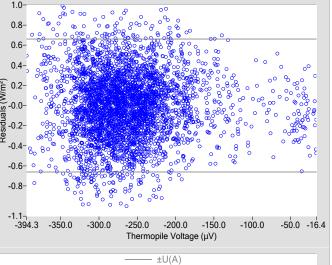
[1]

where,

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

$$\begin{split} & \textit{Wr} = \sigma * \textit{Tr}^{A4} = \text{receiver irradiance (W/m^{2}),} \\ & \text{where,} \quad \sigma = 5.6704\text{e-8 W}\cdot\text{m-2}\cdot\text{K-4}, \\ & \textit{Tr} = \textit{Tc} + \textit{Kr} * \textit{V} = \text{receiver temperature (K),} \\ & \textit{Tc} = \text{case temperature (K),} \\ & \textit{Kr} = \text{efficiency coefficient (K/\muV).} \end{split}$$




Table 2. Calibration Coefficients for K0<>0

KO	-0.3
К1	0.21856
К2	1.0005
К3	-3.50
Kr used to derive coefficients	7.044e-4

Table 4.	Uncertainty	using K0<>0	Coefficients
----------	-------------	-------------	--------------

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.34
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.1

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

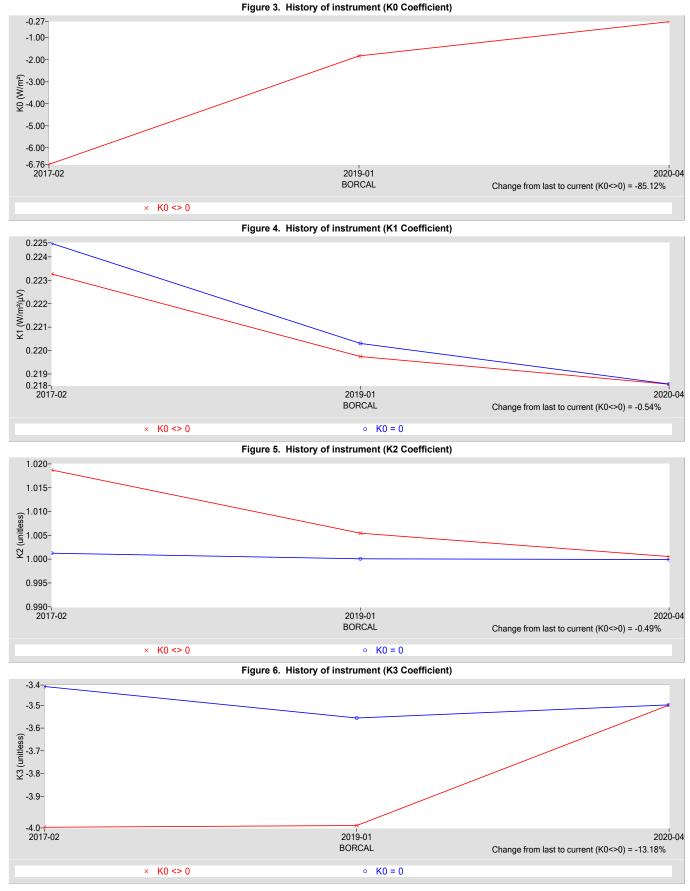


Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.21857
К2	0.9999
К3	-3.50
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficient	Table 5.	Uncertaint	y using K0=) Coefficients
---	----------	------------	-------------	----------------

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.34
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.1

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	30012F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 30012F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

$$\begin{split} & \textit{Wr} = \sigma * \textit{Tr}^{A}\textit{4} = \text{receiver irradiance (W/m^{2}),} \\ & \text{where,} \quad \sigma = 5.6704e\text{-}8 \; \text{W}\cdot\text{m-}2\cdot\text{K-}4, \\ & \textit{Tr} = \textit{Tc} + \textit{Kr} * \textit{V} = \text{receiver temperature (K),} \\ & \textit{Tc} = \text{case temperature (K),} \\ & \textit{Kr} = \text{efficiency coefficient (K/\muV).} \end{split}$$

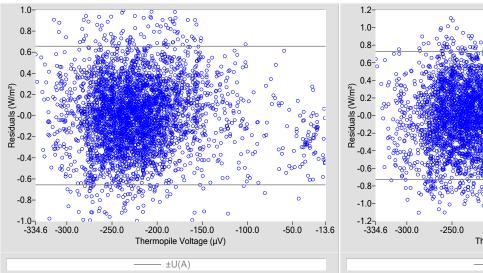
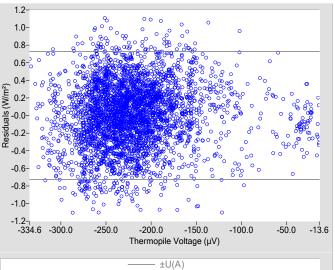
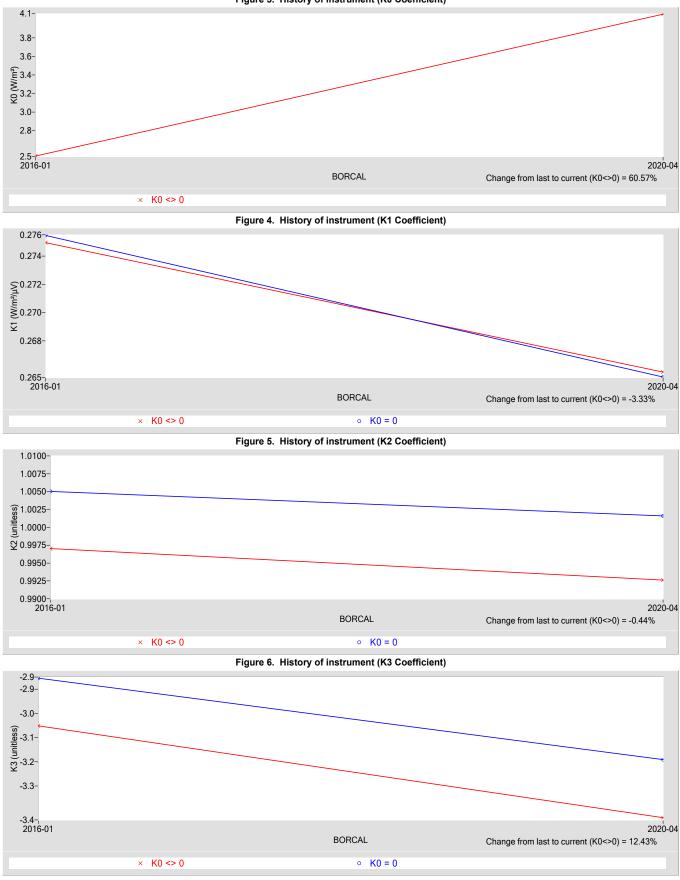



Table 2. Calibration Coefficients for K0<>0

KO	4.1
К1	0.26579
К2	0.9926
КЗ	-3.43
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.33
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.1

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients


Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.26544
K2	1.0016
К3	-3.19
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficient	Table 5.	Uncertaint	y using K0=) Coefficients
---	----------	------------	-------------	----------------

Type-B Standard Uncertainty, u(B) (W/m ²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m ²)	±0.37
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.1

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	30085F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	Data Acquisition NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206		01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 30085F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

 $\begin{array}{l} {\it Wr}=\sigma \; ^{*} \; Tr^{A} = {\rm receiver \; irradiance \; (W/m^2),} \\ {\rm where,} \quad \sigma \; = \; 5.6704e{-}8 \; W \cdot m{-}2 \cdot K{-}4, \\ {\it Tr} \; = \; Tc + Kr \; ^{*} \; V \; = {\rm receiver \; temperature \; (K),} \\ {\it Tc} \; = \; {\rm case \; temperature \; (K),} \\ {\it Kr} \; = \; {\rm efficiency \; coefficient \; (K/\mu V).} \end{array}$

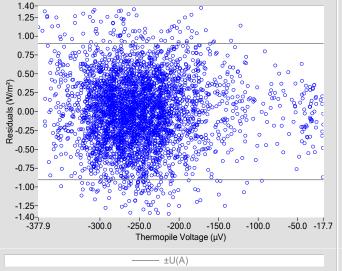
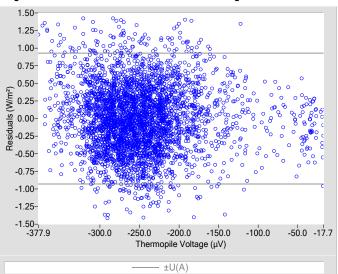


Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

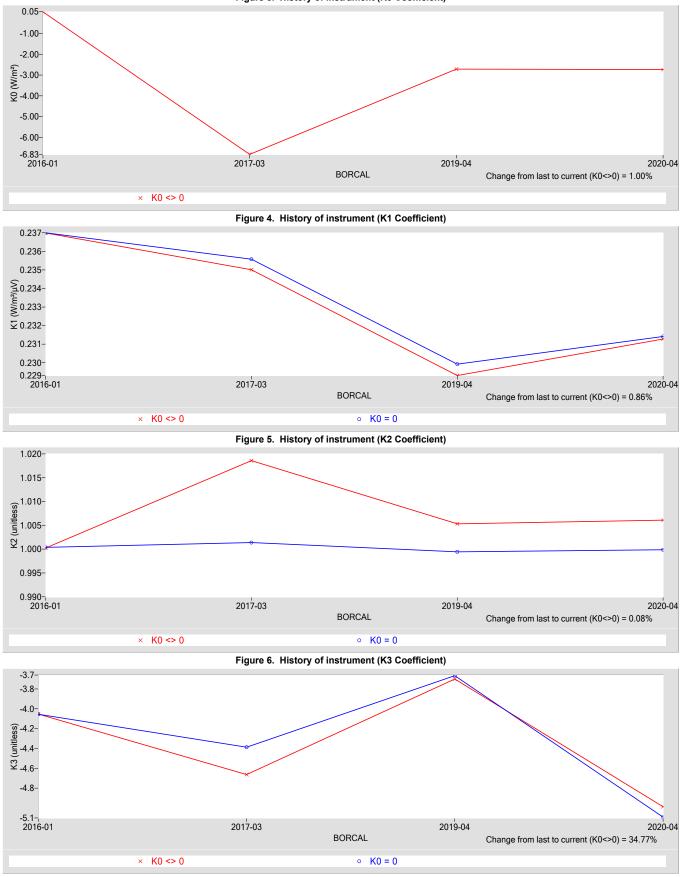

Table 2. Calibration Coefficients for K0<>0

KO	-2.7
К1	0.23128
К2	1.0061
К3	-4.99
Kr used to derive coefficients	7.044e-4

Table 4.	Uncertainty	using K0<>0	Coefficients
----------	-------------	-------------	--------------

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.46
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.2

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients


Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.23141
K2	0.9999
К3	-5.09
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients

, ,	
Type-B Standard Uncertainty, u(B) (W/m ²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m ²)	±0.47
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.2

Figure 3. History of instrument (K0 Coefficient)

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	30131F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206		01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 30131F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

 $\begin{array}{l} Wr = \sigma * Tr^{4} = \text{receiver irradiance (W/m^{2}),} \\ \text{where,} \quad \sigma = 5.6704\text{e-8 W}\cdot\text{m-2}\cdot\text{K-4}, \\ Tr = Tc + Kr * V = \text{receiver temperature (K),} \\ Tc = \text{case temperature (K),} \\ Kr = \text{efficiency coefficient (K/\muV).} \end{array}$

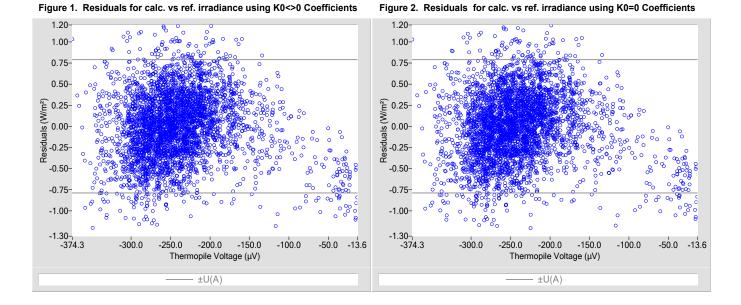


Table 2. Calibration Coefficients for K0<>0

KO	0.3
К1	0.23978
К2	1.0003
К3	-4.20
Kr used to derive coefficients	7.044e-4

Table 4. Uncertainty using K0<>0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.40
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.2

Table 3. Calibration Coefficients for K0=0

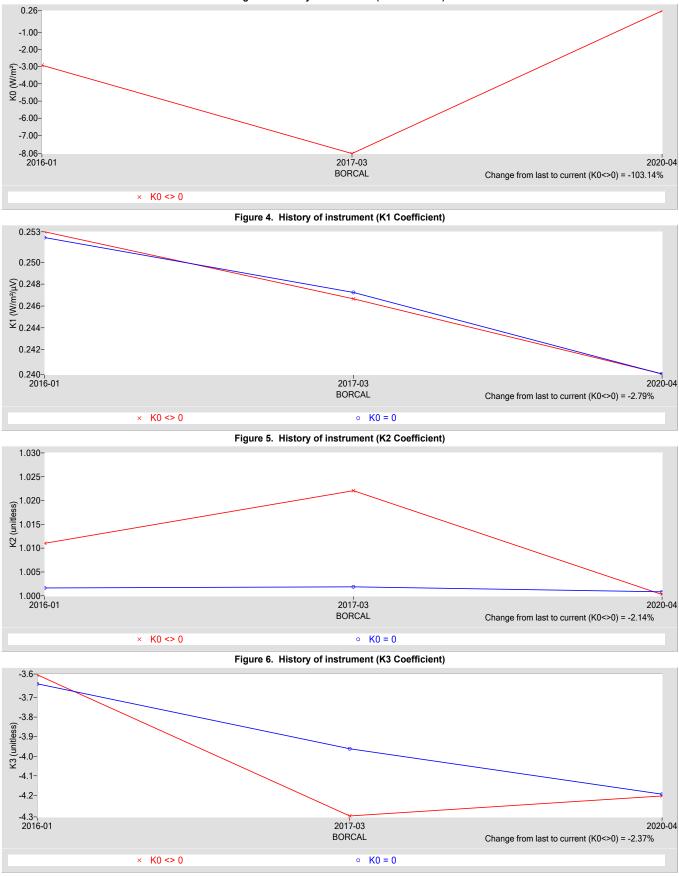

KO	0.0
К1	0.23976
К2	1.0008
К3	-4.19
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.40
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.2

BORCAL-LW 2020-04 / Certificate

Figure 3. History of instrument (K0 Coefficient)

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	30132F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 30132F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

0

-50.0 -13.1

where,

K0,K1,K2,K3 = calibration coefficeints, = thermopile output voltage (μV), V $Wd = \sigma * Td^4 = \text{dome irradiance (W/m^2)},$ where, Td = dome temperature (K),

 $Wr = \sigma * Tr^4 =$ receiver irradiance (W/m²), where, $\sigma = 5.6704e-8 \text{ W}\cdot\text{m}-2\cdot\text{K}-4$, Tr = Tc + Kr * V = receiver temperature (K), Tc = case temperature (K), Kr = efficiency coefficient (K/µV).

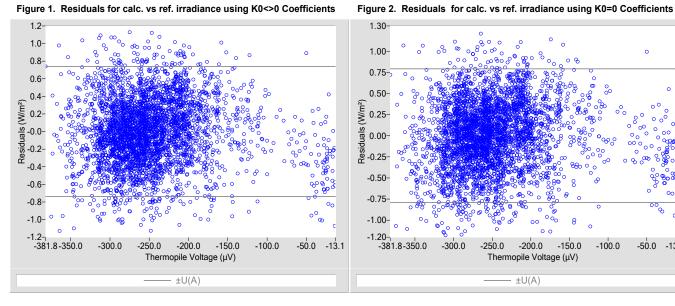


Table 2. Calibration Coefficients for K0<>0

KO	3.6
К1	0.22897
К2	0.9934
КЗ	-3.53
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.38
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.1

8

-150.0


-100.0

Table 3. Calibration Coefficients for K0=0			
КО	0.0		
К1	0.22881		
К2	1.0015		
К3	-3.36		
Kr used to derive coefficients	7.044e-4		

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m ²)	±0.40
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.2

Southern Great Plains

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	30167F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 30167F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

 $\begin{array}{l} Wr = \sigma * Tr^{4} = \text{receiver irradiance (W/m^{2}),} \\ \text{where,} \quad \sigma = 5.6704\text{e-8 W}\cdot\text{m-2}\cdot\text{K-4,} \\ Tr = Tc + Kr * V = \text{receiver temperature (K),} \\ Tc = \text{case temperature (K),} \\ Kr = \text{efficiency coefficient (K/\mu\text{V}).} \end{array}$

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

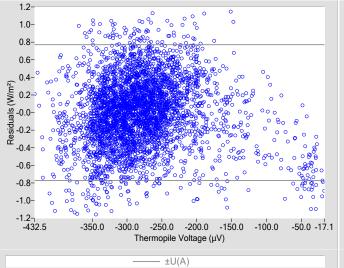
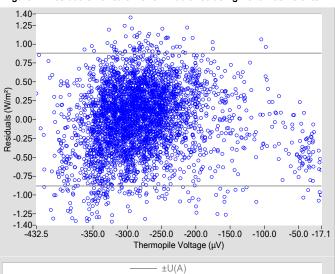
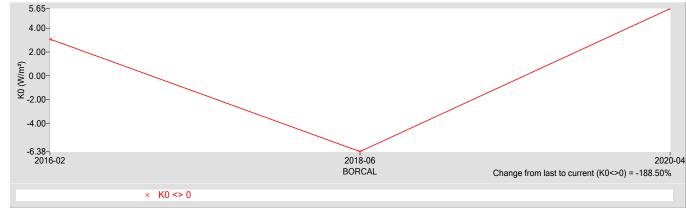



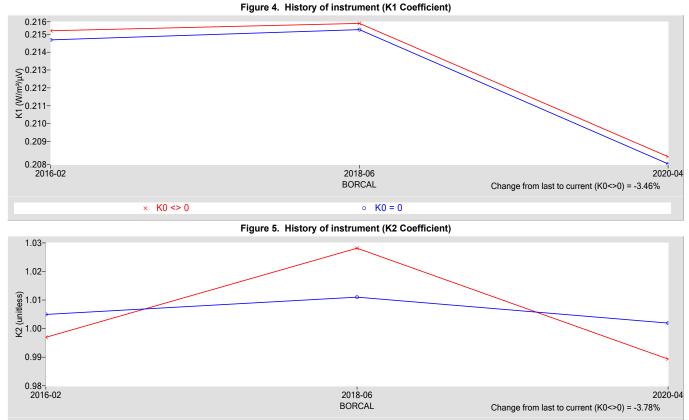
Table 2. Calibration Coefficients for K0<>0

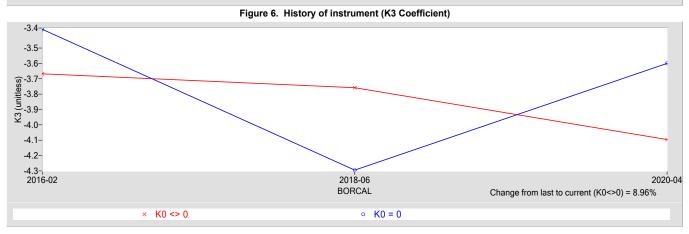
KO	5.6
К1	0.20815
К2	0.9893
К3	-4.10
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.39
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.2

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients


Table 3. Calibration Coefficients for K0=0


KO	0.0
К1	0.20775
K2	1.0019
К3	-3.60
Kr used to derive coefficients	7.044e-4


Table 5. Uncertainty using K0=0 Coefficients

, ,	
Type-B Standard Uncertainty, u(B) (W/m ²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m ²)	±0.45
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.2

Figure 3. History of instrument (K0 Coefficient)

• K0 = 0

References:

[1] Reda, I.; Stoffel, T. (2010). Pyrgeometer Calibration for DOE-Atmospheric System Research Program using NREL Method (Presentation). 9 pp.; NREL Report No. PR-3B0-47756; http://www.nrel.gov/docs/fy10osti/47756.pdf.

× K0 <> 0

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	30168F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	NSA	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 30168F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

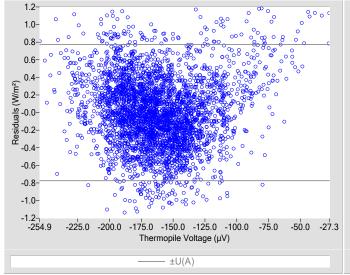
 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

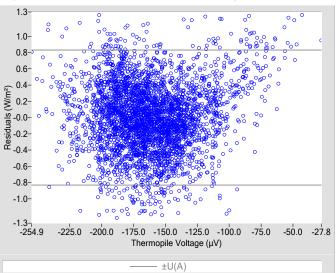
[1]

where,

 $\begin{array}{l} Wr = \sigma * Tr^{4} = \text{receiver irradiance (W/m^{2}),} \\ \text{where,} \quad \sigma = 5.6704\text{e-8 W}\cdot\text{m-2}\cdot\text{K-4}, \\ Tr = Tc + Kr * V = \text{receiver temperature (K),} \\ Tc = \text{case temperature (K),} \\ Kr = \text{efficiency coefficient (K/\muV).} \end{array}$

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients




Table 2. Calibration Coefficients for K0<>0

KO	3.5
К1	0.36313
К2	0.9879
К3	-4.14
Kr used to derive coefficients	7.044e-4

Table 4. Uncertainty using K0<>0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.40
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.2

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

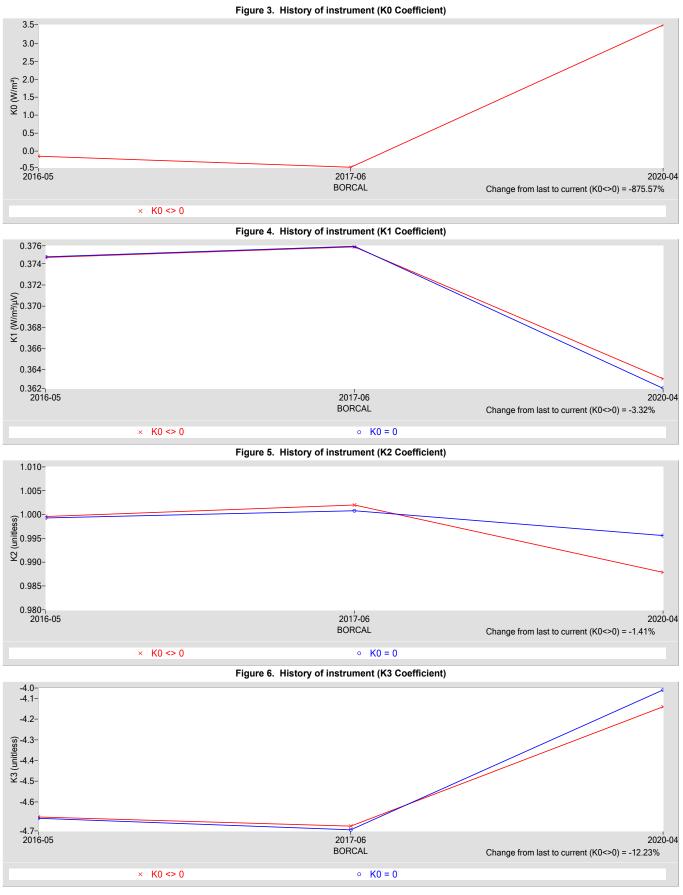


Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.36223
K2	0.9956
К3	-4.06
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients

, ,	
Type-B Standard Uncertainty, u(B) (W/m ²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m ²)	±0.42
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.2

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	30357F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 30357F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

-50.0 -14.1

where,

K0,K1,K2,K3	= calibration coefficeints,
V	= thermopile output voltage (μ V),
$Wd = \sigma * Td^4$	= dome irradiance (W/m²),
where, Td	= dome temperature (K),

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

$$\begin{split} & \textit{Wr} = \sigma * \textit{Tr}^{A}\textit{4} = \text{receiver irradiance (W/m^{2}),} \\ & \text{where,} \quad \sigma = 5.6704\text{e-8} \text{ W}\cdot\text{m-2}\cdot\text{K-4}, \\ & \textit{Tr} = \textit{Tc} + \textit{Kr} * \textit{V} = \text{receiver temperature (K),} \\ & \textit{Tc} = \text{case temperature (K),} \\ & \textit{Kr} = \text{efficiency coefficient (K/\muV).} \end{split}$$

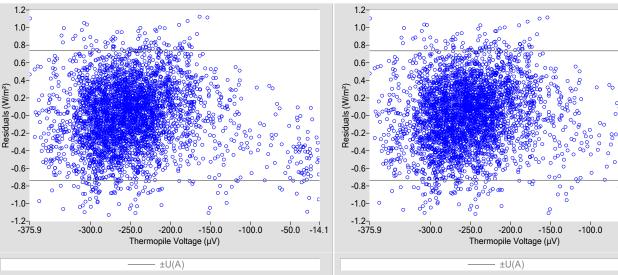
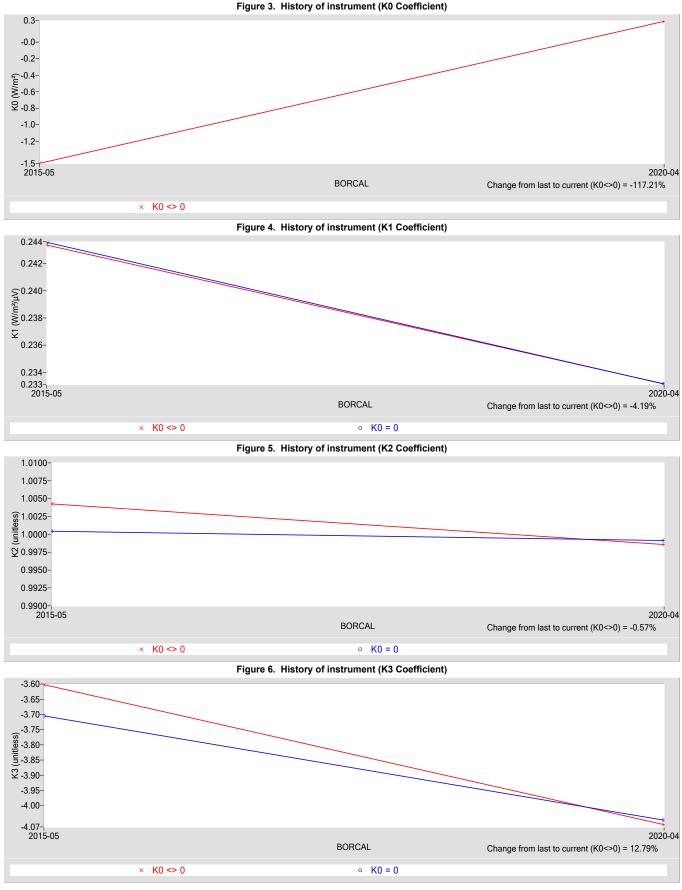


Table 2. Calibration Coefficients for K0<>0

KO	0.3
К1	0.23316
К2	0.9986
КЗ	-4.06
Kr used to derive coefficients	7.044e-4

Table 4.	Uncertainty	using K0<>0	Coefficients
----------	-------------	-------------	--------------

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.38
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.1


Table 3. Calibration Coefficients for K0=0

КО	0.0
К1	0.23315
К2	0.9991
К3	-4.05
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients

, ,	
Type-B Standard Uncertainty, u(B) (W/m ²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m ²)	±0.38
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.1

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	30681F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 30681F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

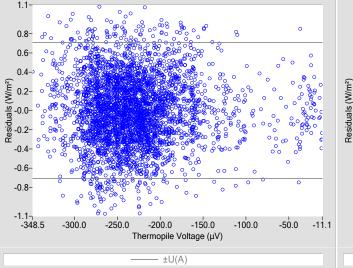


Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

Table 2. Calibration Coefficients for K0<>0

KO	4.3
К1	0.24572
К2	0.9859
К3	-4.03
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.36
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.1

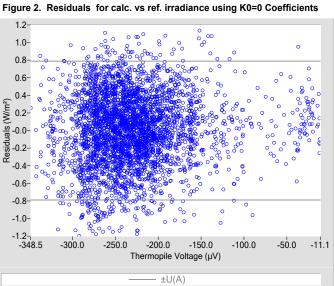
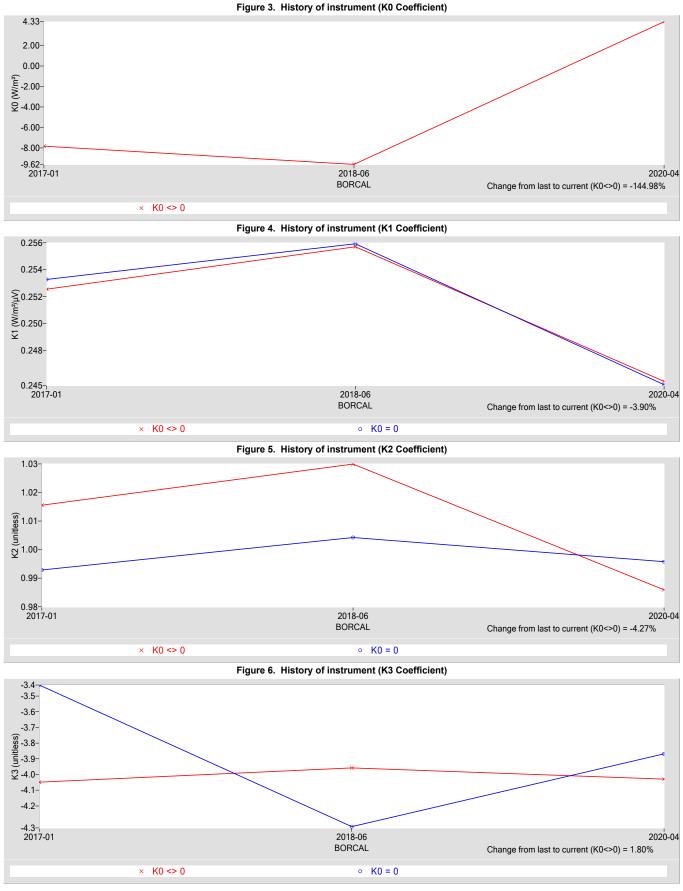



Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.24547
К2	0.9958
К3	-3.87
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.40
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.2

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	30690F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 30690F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

K0,K1,K2,K3 = calibration coefficeints, = thermopile output voltage (µV), V $Wd = \sigma * Td^4 = \text{dome irradiance (W/m^2)},$ where, Td = dome temperature (K),

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

 $Wr = \sigma * Tr^4 =$ receiver irradiance (W/m²), where, $\sigma = 5.6704e-8 \text{ W} \cdot \text{m} - 2 \cdot \text{K} \cdot 4$, Tr = Tc + Kr * V = receiver temperature (K), Tc = case temperature (K), Kr = efficiency coefficient (K/µV).

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

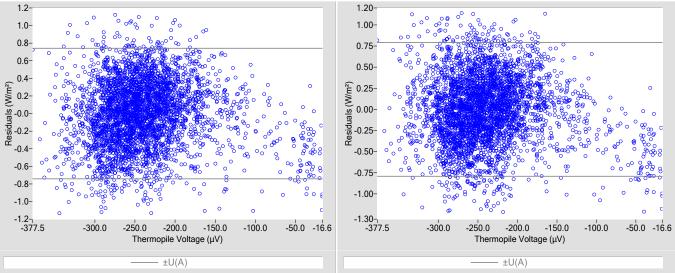
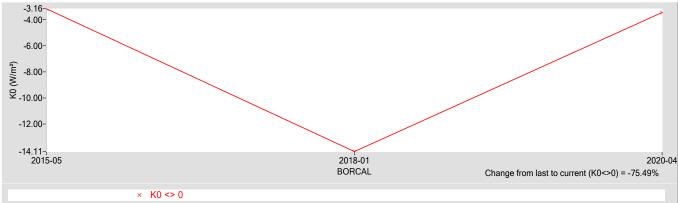
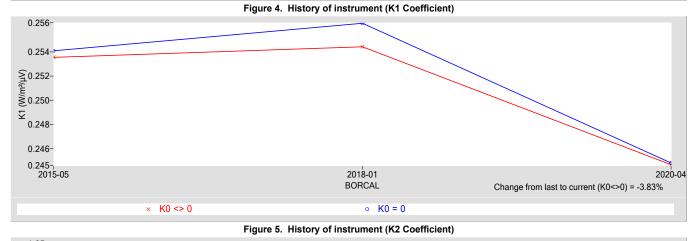
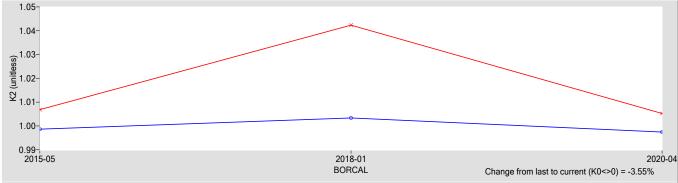


Table 2. Calibration Coefficients for K0<>0

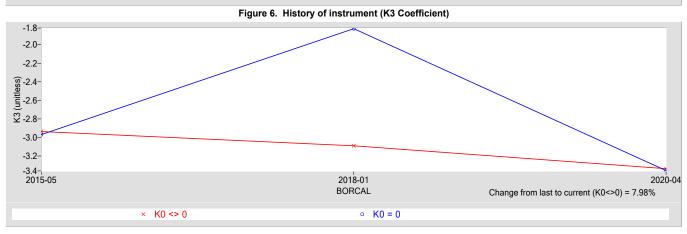
KO	-3.5
К1	0.24469
К2	1.0053
КЗ	-3.34
Kr used to derive coefficients	7.044e-4


Table 4.	Uncertainty	using K0<>0	Coefficients
----------	-------------	-------------	--------------


Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.38
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.1


Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.24483
К2	0.9974
К3	-3.36
Kr used to derive coefficients	7.044e-4


Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.40
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.2

• K0 = 0

References:

[1] Reda, I.; Stoffel, T. (2010). Pyrgeometer Calibration for DOE-Atmospheric System Research Program using NREL Method (Presentation). 9 pp.; NREL Report No. PR-3B0-47756; http://www.nrel.gov/docs/fy10osti/47756.pdf.

× K0 <> 0

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	30692F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 30692F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

$$\begin{split} Wr &= \sigma * Tr^{A} = \text{receiver irradiance (W/m^{2}),} \\ \text{where,} \quad \sigma &= 5.6704\text{e-8} \text{ W}\cdot\text{m-2}\cdot\text{K-4}, \\ Tr &= Tc + Kr * V &= \text{receiver temperature (K),} \\ Tc &= \text{case temperature (K),} \\ Kr &= \text{efficiency coefficient (K/\muV).} \end{split}$$

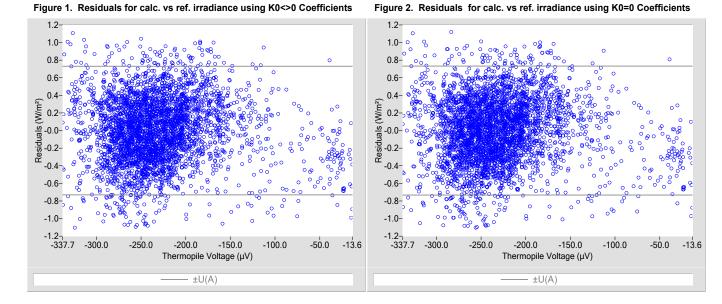
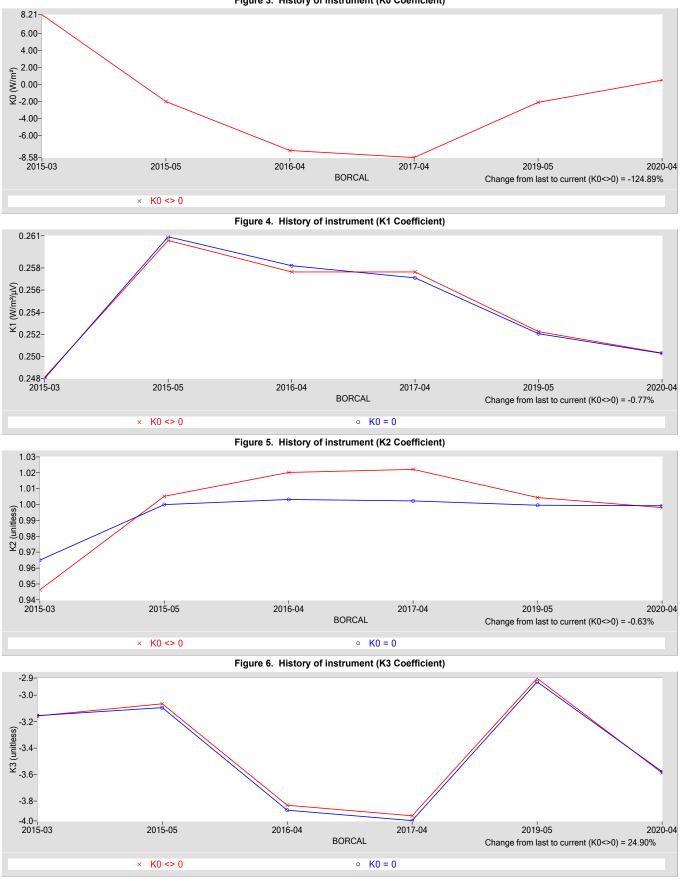


Table 2. Calibration Coefficients for K0<>0

KO	0.5
К1	0.25031
К2	0.9981
КЗ	-3.59
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.37
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.1


Table 3. Calibration Coefficients for K0=0

КО	0.0
К1	0.25028
К2	0.9993
К3	-3.58
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.37
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.1

Figure 3. History of instrument (K0 Coefficient)

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	30781F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

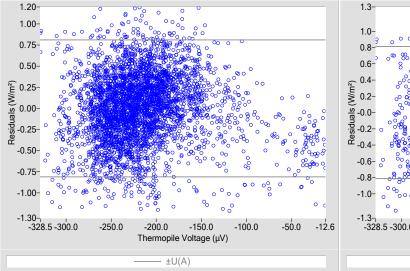
Date

For questions or comments, please contact the technical manager at:

Calibration Results 30781F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

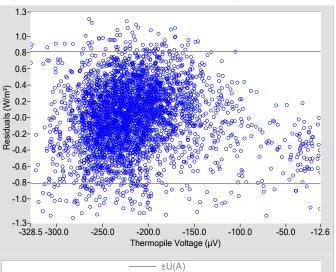

[1]

where,

K0,K1,K2,K3 V	= calibration coefficeints,= thermopile output voltage (μV),
$Wd = \sigma * Td^4$	= dome irradiance (W/m ²),
where, Td	= dome temperature (K),

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

 $Wr = \sigma * Tr^4 =$ receiver irradiance (W/m²), where, $\sigma = 5.6704e-8 \text{ W}\cdot\text{m}-2\cdot\text{K}-4$, Tr = Tc + Kr * V = receiver temperature (K), Tc = case temperature (K), Kr = efficiency coefficient (K/µV).

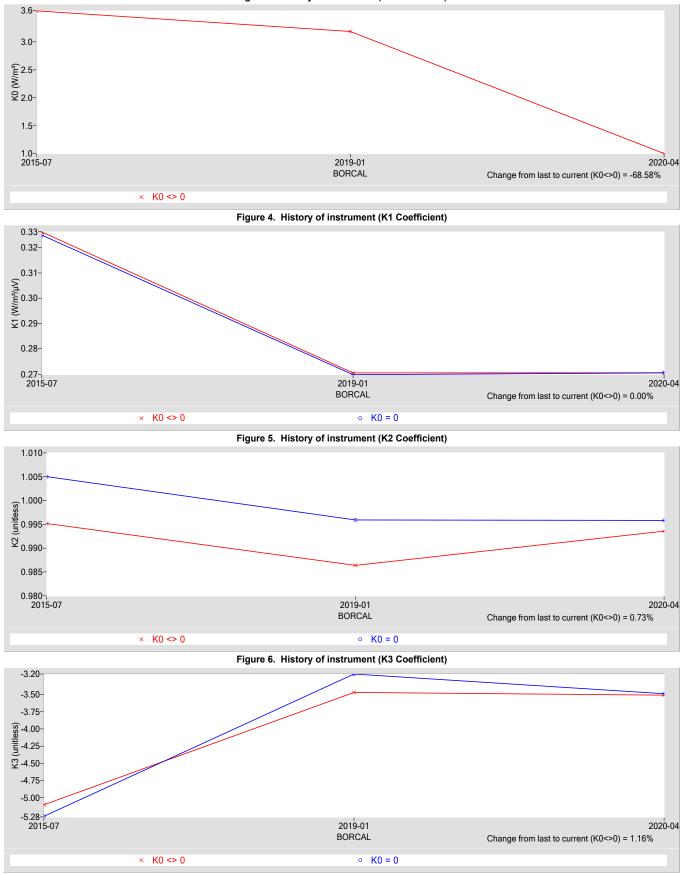

Table 2. Calibration Coefficients for K0<>0

KO	1.0
К1	0.27043
К2	0.9936
К3	-3.51
Kr used to derive coefficients	7.044e-4

Table 4. Uncertainty using K0<>0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.41
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.2

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients


Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.27037
К2	0.9958
К3	-3.49
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.42
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.2

Figure 3. History of instrument (K0 Coefficient)

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	30828F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 30828F3 Eppley PIR

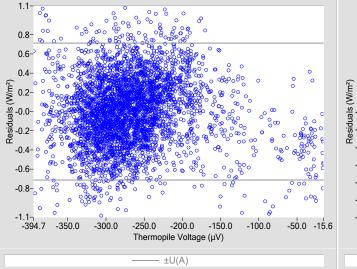
The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

 $\begin{array}{l} {\it Wr}=\sigma \; ^{*} \; {\it Tr}^{A} = {\rm receiver \; irradiance \; (W/m^2),} \\ {\it where,} \quad \sigma \; = \; 5.6704e{-}8 \; W \cdot m{-}2 \cdot K{-}4, \\ {\it Tr} \; = \; {\it Tc} + {\it Kr} \; ^{*} \; V \; = {\rm receiver \; temperature \; (K),} \\ {\it Tc} \; = \; {\rm case \; temperature \; (K),} \\ {\it Kr} \; = \; {\rm efficiency \; coefficient \; (K/\mu V).} \end{array}$



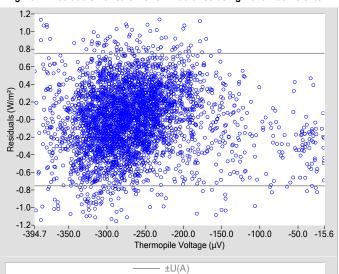

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

Table 2. Calibration Coefficients for K0<>0

KO	2.9
К1	0.21399
К2	0.9921
КЗ	-3.32
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.36
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.1

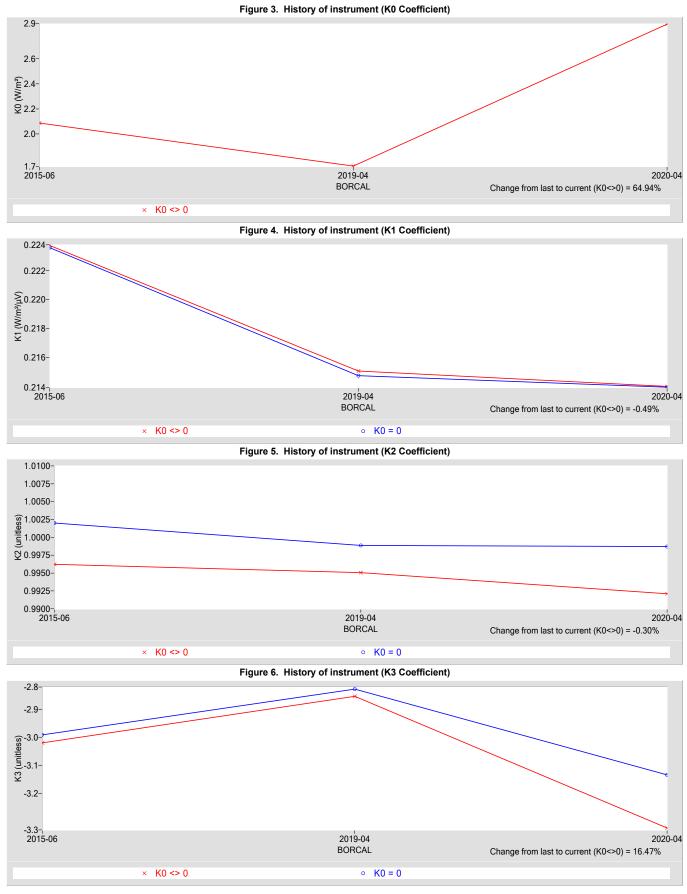

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.21393
K2	0.9987
К3	-3.13
Kr used to derive coefficients	7.044e-4

±1.6
±0.38
±1.6
+Inf
1.96
±3.1

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	30834F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 30834F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

 $\begin{array}{l} {\it Wr}=\sigma \; ^{*} \; {\it Tr}^{A} = {\rm receiver \; irradiance \; (W/m^2),} \\ {\it where,} \quad \sigma \; = \; 5.6704e{-}8 \; W \cdot m{-}2 \cdot K{-}4, \\ {\it Tr} \; = \; {\it Tc} + {\it Kr} \; ^{*} \; V \; = {\rm receiver \; temperature \; (K),} \\ {\it Tc} \; = \; {\rm case \; temperature \; (K),} \\ {\it Kr} \; = \; {\rm efficiency \; coefficient \; (K/\mu V).} \end{array}$

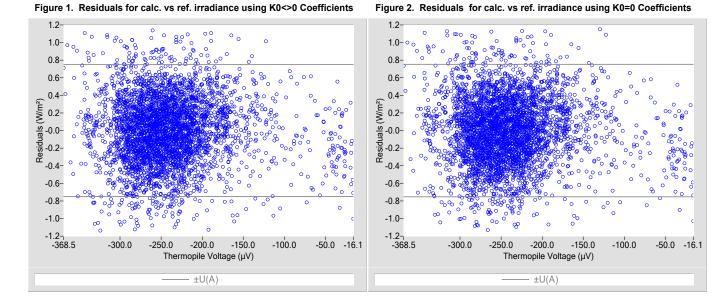


Table 2. Calibration Coefficients for K0<>0

КО	-1.1
К1	0.24175
К2	1.0062
К3	-4.26
Kr used to derive coefficients	7.044e-4

Table 4. Uncertainty using K0<>0 Coefficients

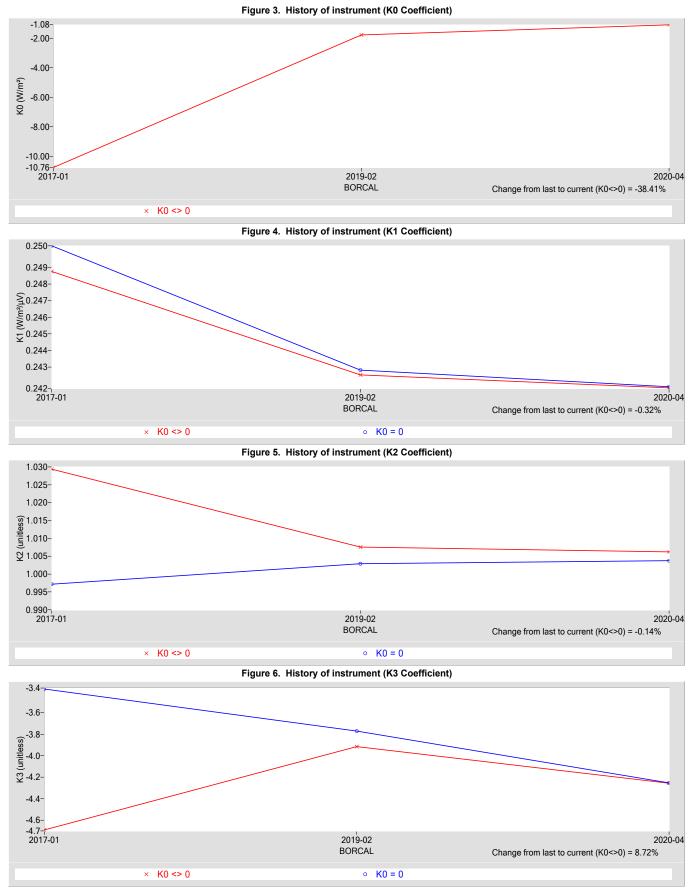

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.38
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.1

Table 3. Calibration Coefficients for K0=0

КО	0.0
К1	0.24182
К2	1.0037
К3	-4.25
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.38
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.1

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	30836F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 30836F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

K0,K1,K2,K3 = calibration coefficeints, = thermopile output voltage (µV), V $Wd = \sigma * Td^4 = \text{dome irradiance (W/m^2)},$ where, Td = dome temperature (K),

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

 $Wr = \sigma * Tr^4 =$ receiver irradiance (W/m²), where, $\sigma = 5.6704e-8 \text{ W}\cdot\text{m}-2\cdot\text{K}-4$, Tr = Tc + Kr * V = receiver temperature (K), Tc = case temperature (K), Kr = efficiency coefficient (K/µV).

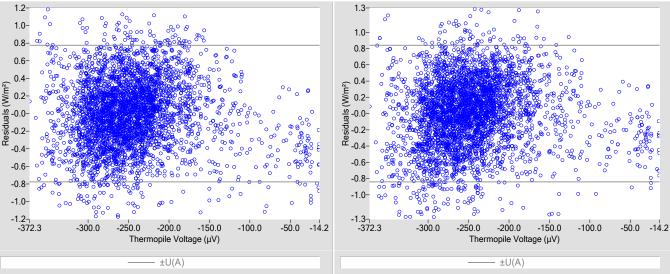
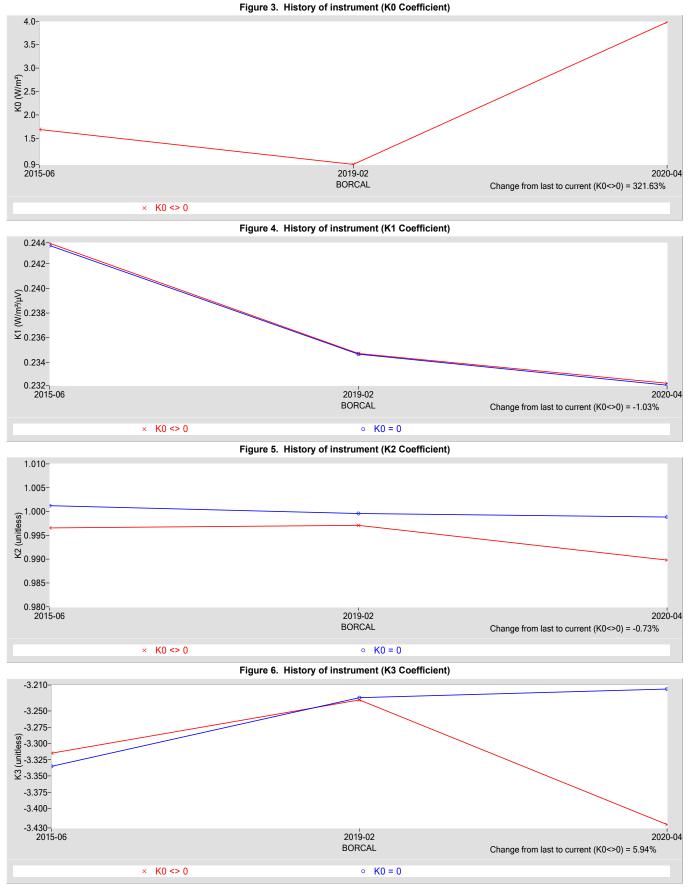


Table 2. Calibration Coefficients for K0<>0

K0	4.0
К1	0.23229
К2	0.9898
К3	-3.42
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.40
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.2


Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.23214
К2	0.9988
К3	-3.22
Kr used to derive coefficients	7.044e-4

Table 5.	Uncertainty	usina	K0=0	Coefficients
Tuble 0.	oncontainty	using	110-0	00001110101110

•••	
Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.43
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.2

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	31299F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	NSA	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 31299F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

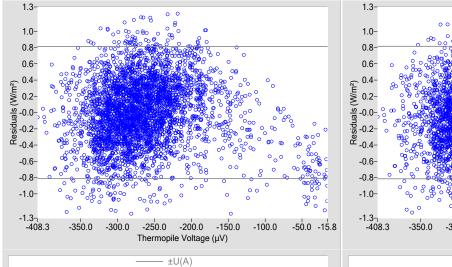
[1]

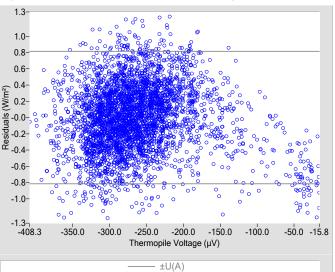
where,

K0,K1,K2,K3	= calibration coefficeints,
V	= thermopile output voltage (μ V),
$Wd = \sigma * Td^4$	= dome irradiance (W/m ²),
where, Td	= dome temperature (K),

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

$$\begin{split} & \textit{Wr} = \sigma * \textit{Tr}^{A} = \text{receiver irradiance (W/m^{2}),} \\ & \text{where,} \quad \sigma = 5.6704\text{e-8 W}\cdot\text{m-2}\cdot\text{K-4}, \\ & \textit{Tr} = \textit{Tc} + \textit{Kr} * \textit{V} = \text{receiver temperature (K),} \\ & \textit{Tc} = \text{case temperature (K),} \\ & \textit{Kr} = \text{efficiency coefficient (K/\muV).} \end{split}$$



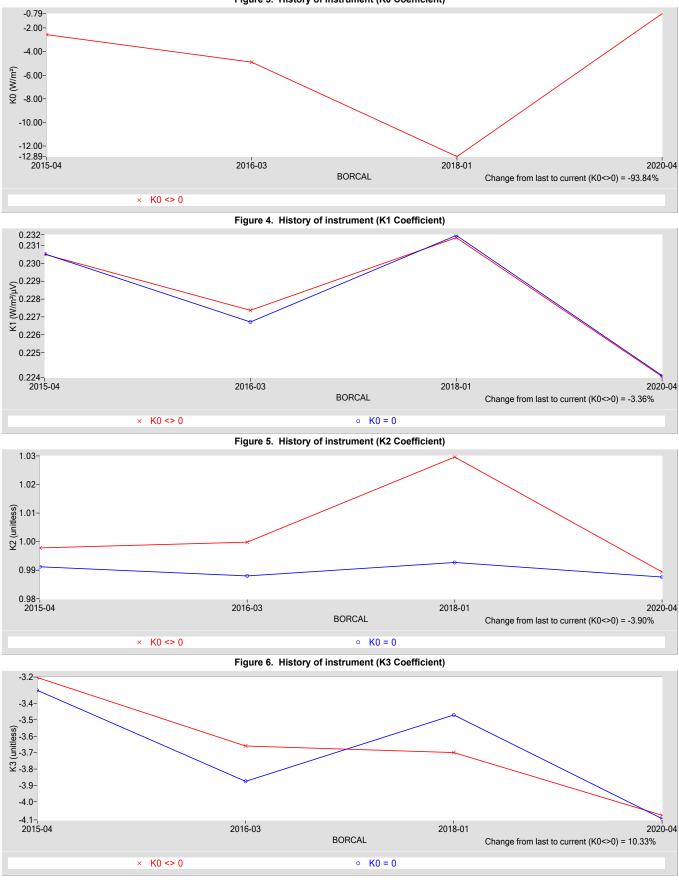

Table 2. Calibration Coefficients for K0<>0

KO	-0.8
К1	0.22366
К2	0.9894
К3	-4.08
Kr used to derive coefficients	7.044e-4

Table 4. Uncertainty using K0<>0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.42
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.2

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients


Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.22372
K2	0.9876
К3	-4.10
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients

•••	
Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.42
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.2

Figure 3. History of instrument (K0 Coefficient)

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	31301F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 31301F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

-12.2

where,

K0,K1,K2,K3 = calibration coefficeints, = thermopile output voltage (µV), V $Wd = \sigma * Td^4 = \text{dome irradiance (W/m^2)},$ where, Td = dome temperature (K),

 $Wr = \sigma * Tr^4 =$ receiver irradiance (W/m²), where, $\sigma = 5.6704e-8 \text{ W}\cdot\text{m}-2\cdot\text{K}-4$, Tr = Tc + Kr * V = receiver temperature (K), Tc = case temperature (K), Kr = efficiency coefficient (K/µV).

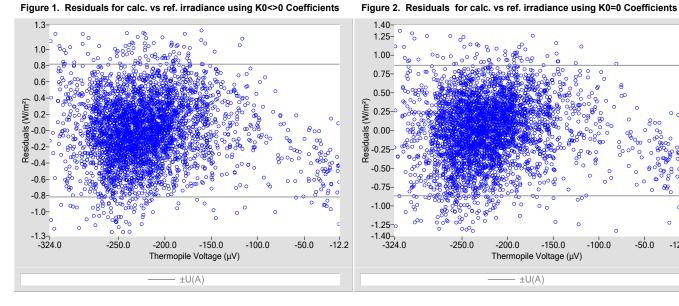
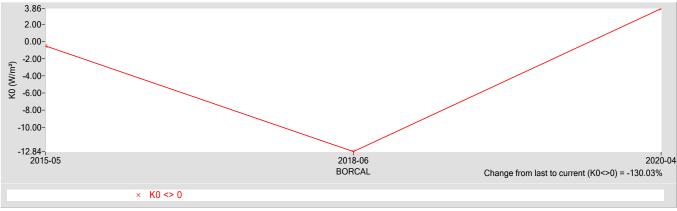


Table 2. Calibration Coefficients for K0<>0

K0	3.9
К1	0.26345
К2	0.9917
К3	-4.02
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.42
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.2


Table 3. Calibration Coefficients for K0=0

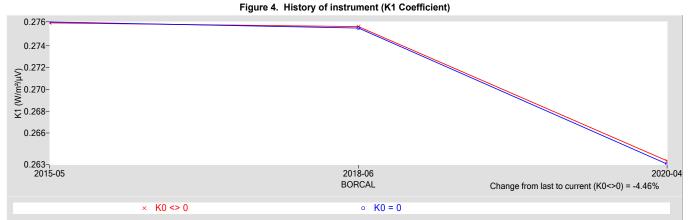
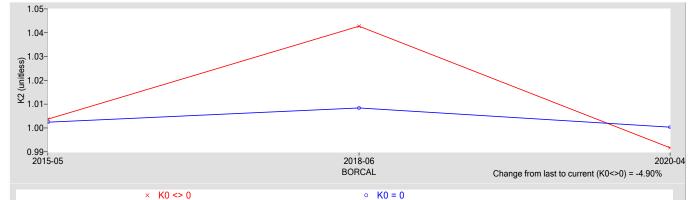
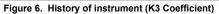
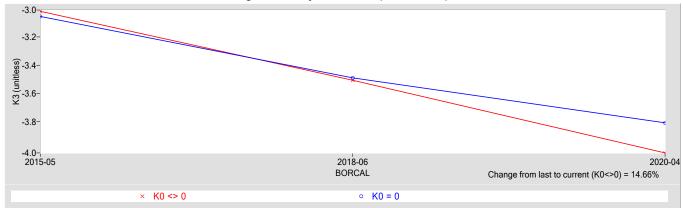

KO	0.0
К1	0.26317
К2	1.0003
К3	-3.81
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients


Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.44
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.2


Figure 3. History of instrument (K0 Coefficient)



Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	31302F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 31302F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

K0,K1,K2,K3 = calibration coefficeints, = thermopile output voltage (µV), V $Wd = \sigma * Td^4 = \text{dome irradiance (W/m^2)},$ where, Td = dome temperature (K),

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

 $Wr = \sigma * Tr^4 =$ receiver irradiance (W/m²), where, $\sigma = 5.6704e-8 \text{ W}\cdot\text{m}-2\cdot\text{K}-4$, Tr = Tc + Kr * V = receiver temperature (K), Tc = case temperature (K), Kr = efficiency coefficient (K/µV).

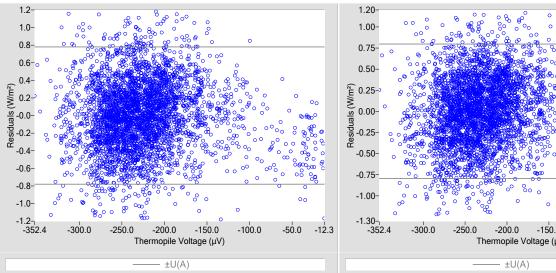
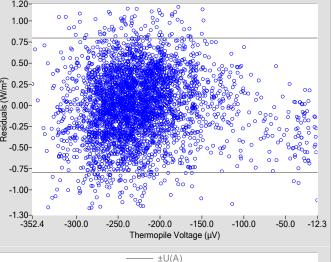
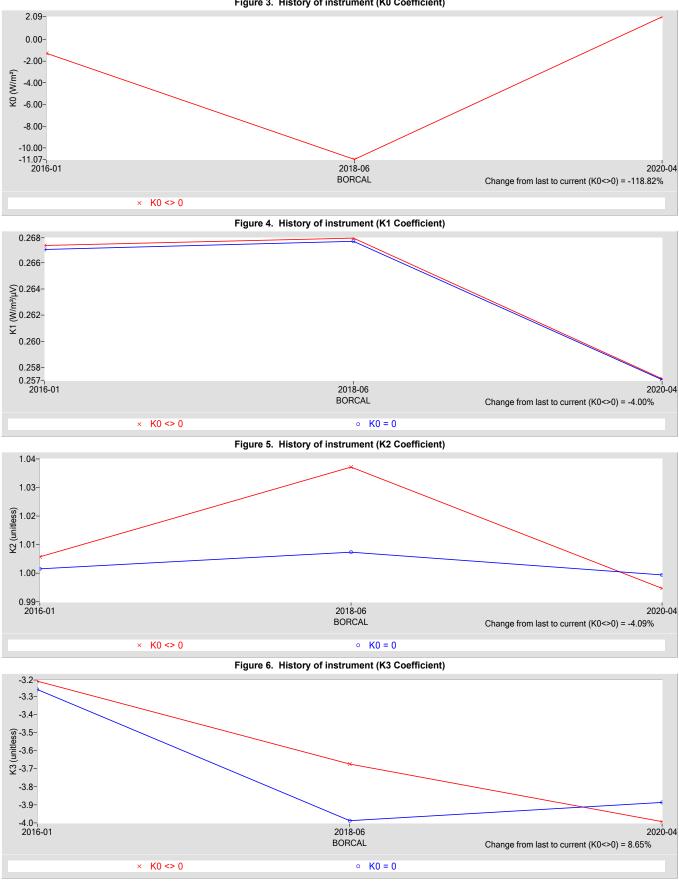



Table 2. Calibration Coefficients for K0<>0

KO	2.1
К1	0.25715
К2	0.9947
К3	-3.99
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.40
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.2

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients


Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.25707
K2	0.9994
К3	-3.89
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficient	Table 5.	Uncertaint	y using K0=) Coefficients
---	----------	------------	-------------	----------------

•••	
Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.41
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.2

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	31308F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

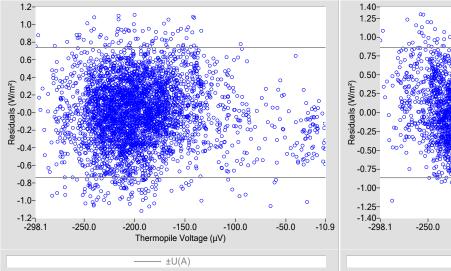
Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 31308F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:


 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

 $\begin{array}{l} Wr = \sigma * Tr^{4} = \text{receiver irradiance (W/m^{2}),} \\ \text{where,} \quad \sigma = 5.6704\text{e-8 W}\cdot\text{m-2}\cdot\text{K-4,} \\ Tr = Tc + Kr * V = \text{receiver temperature (K),} \\ Tc = \text{case temperature (K),} \\ Kr = \text{efficiency coefficient (K/\mu\text{V}).} \end{array}$

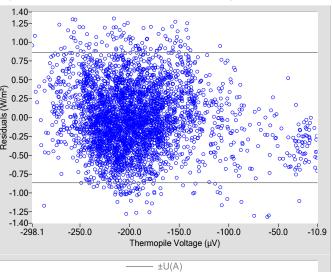


Table 2. Calibration Coefficients for K0<>0			
К0	-5.6		
К1	0.29830		
К2	1.0093		
КЗ	-3.51		
Kr used to derive coefficients	7.044e-4		

Table 4. Uncertainty using K0<>0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.38
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.1

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

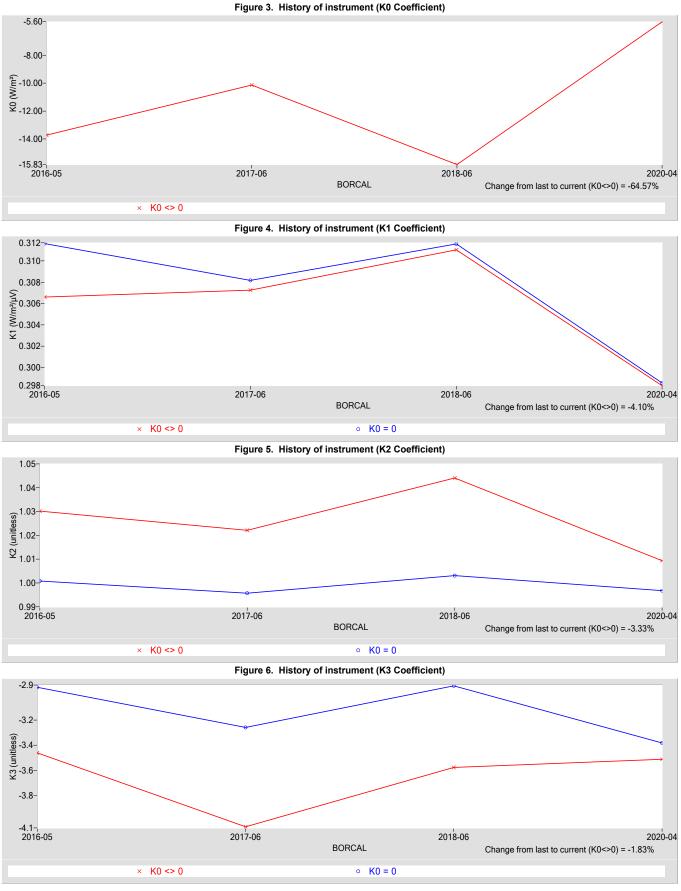


Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.29855
К2	0.9968
К3	-3.38
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients

, ,	
Type-B Standard Uncertainty, u(B) (W/m ²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m ²)	±0.44
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.2

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	31311F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	TWP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 31311F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

K0,K1,K2,K3	= calibration coefficeints,
V	= thermopile output voltage (μ V),
$Wd = \sigma * Td^4$	= dome irradiance (W/m ²),
where, Td	= dome temperature (K),

$$\begin{split} & \textit{Wr} = \sigma * \textit{Tr}^{A} = \text{receiver irradiance (W/m^{2}),} \\ & \text{where,} \quad \sigma = 5.6704\text{e-8 W}\cdot\text{m-2}\cdot\text{K-4}, \\ & \textit{Tr} = \textit{Tc} + \textit{Kr} * \textit{V} = \text{receiver temperature (K),} \\ & \textit{Tc} = \text{case temperature (K),} \\ & \textit{Kr} = \text{efficiency coefficient (K/\muV).} \end{split}$$

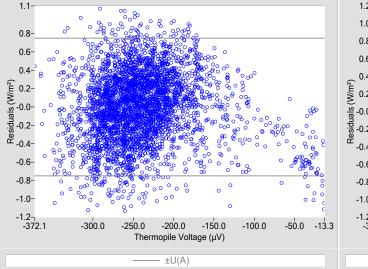
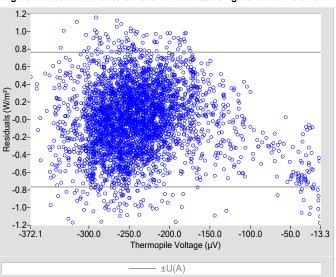


Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

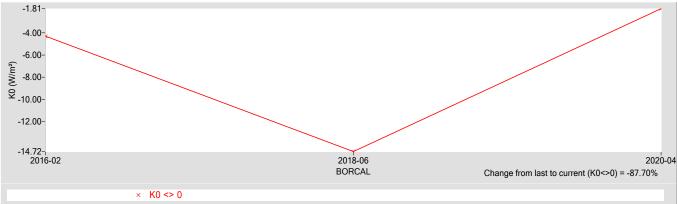

Table 2. Calibration Coefficients for K0<>0

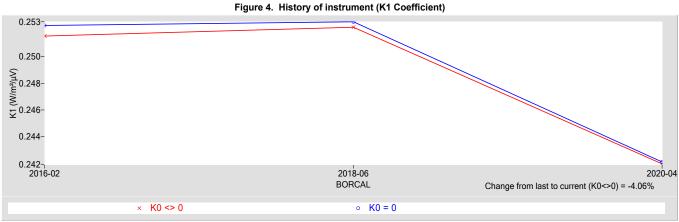
КО	-1.8
К1	0.24196
К2	1.0006
К3	-3.30
Kr used to derive coefficients	7.044e-4

Table 4. Uncertainty using K0<>0 Coefficients

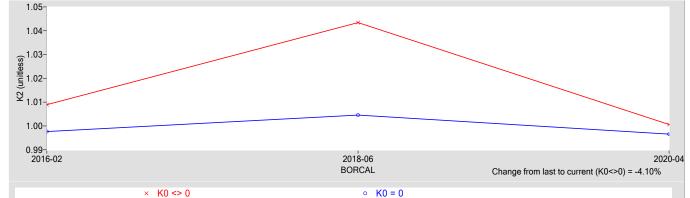
Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.38
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.1

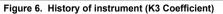
Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

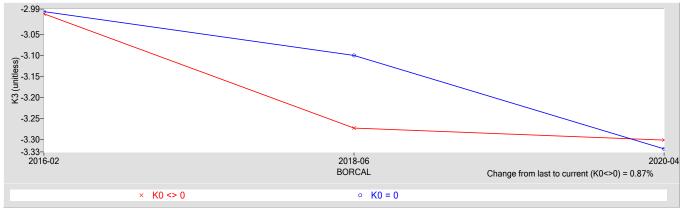



Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.24210
К2	0.9966
К3	-3.32
Kr used to derive coefficients	7.044e-4


Table 5. Uncertainty using K0=0 Coefficients


Type-B Standard Uncertainty, u(B) (W/m ²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m ²)	±0.39
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.1



Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	31640F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 31640F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

$$\begin{split} Wr &= \sigma * Tr^{4} = \text{receiver irradiance (W/m^{2}),} \\ \text{where,} \quad \sigma &= 5.6704\text{e-8 W}\cdot\text{m-2}\cdot\text{K-4}, \\ Tr &= Tc + Kr * V \quad = \text{receiver temperature (K),} \\ Tc &= \text{case temperature (K),} \\ Kr &= \text{efficiency coefficient (K/\mu\text{V}).} \end{split}$$

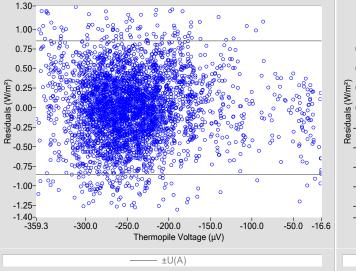
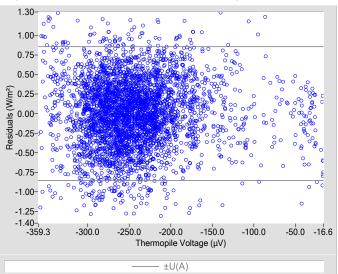


Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients


Table 2. Calibration Coefficients for K0<>0

KO	1.4
К1	0.24029
К2	0.9952
К3	-3.84
Kr used to derive coefficients	7.044e-4

Table 4. Uncertainty using K0<>0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.44
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.2

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

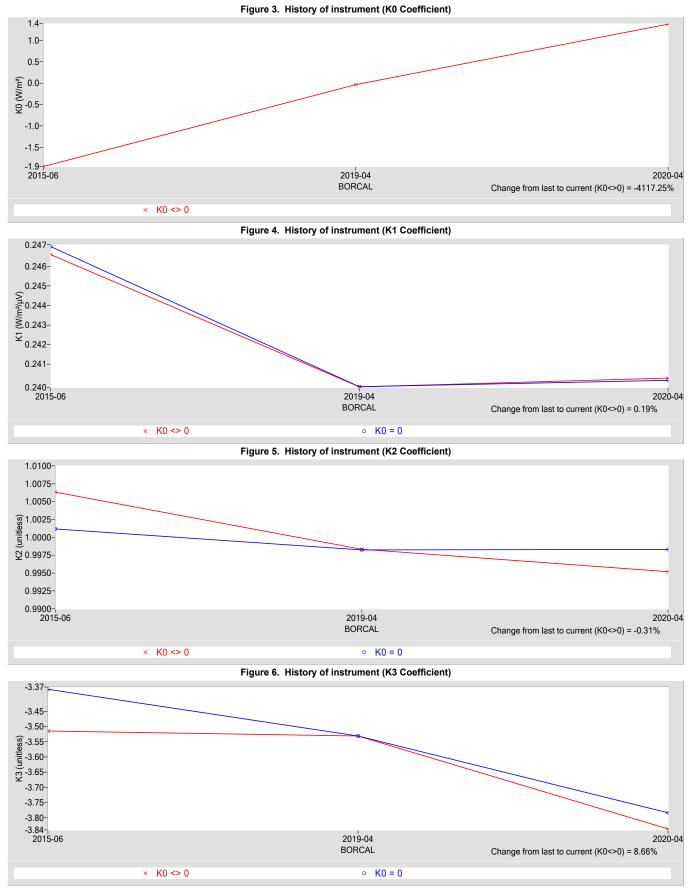


Table 3. Calibration Coefficients for K0=0

КО	0.0
К1	0.24017
К2	0.9983
К3	-3.78
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients

•••	
Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.44
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.2

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	32040F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	NSA	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 32040F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

 $\begin{array}{l} {\it Wr}=\sigma \; ^{*} \; Tr^{A} = {\rm receiver \; irradiance \; (W/m^2),} \\ {\rm where,} \quad \sigma \; = \; 5.6704e{-}8 \; W \cdot m{-}2 \cdot K{-}4, \\ {\it Tr} \; = \; Tc \; + \; Kr \; ^{*} \; V \; = \; {\rm receiver \; temperature \; (K),} \\ {\it Tc} \; = \; {\rm case \; temperature \; (K),} \\ {\it Kr} \; = \; {\rm efficiency \; coefficient \; (K/\mu V).} \end{array}$

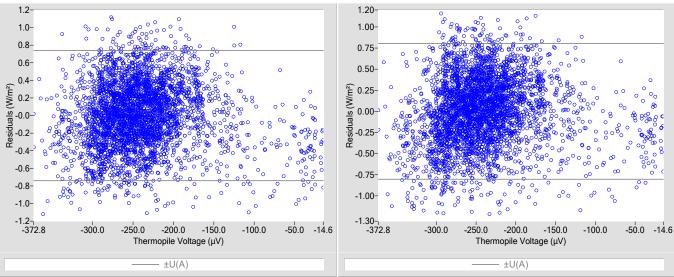


Table 2. Calibration Coefficients for K0<>0

KO	3.6
К1	0.24167
К2	0.9904
КЗ	-3.86
Kr used to derive coefficients	7.044e-4

Table 4.	Uncertainty	using K0<>0	Coefficients
----------	-------------	-------------	--------------

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.38
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.1

Table 3. Calibration Coefficients for K0=0

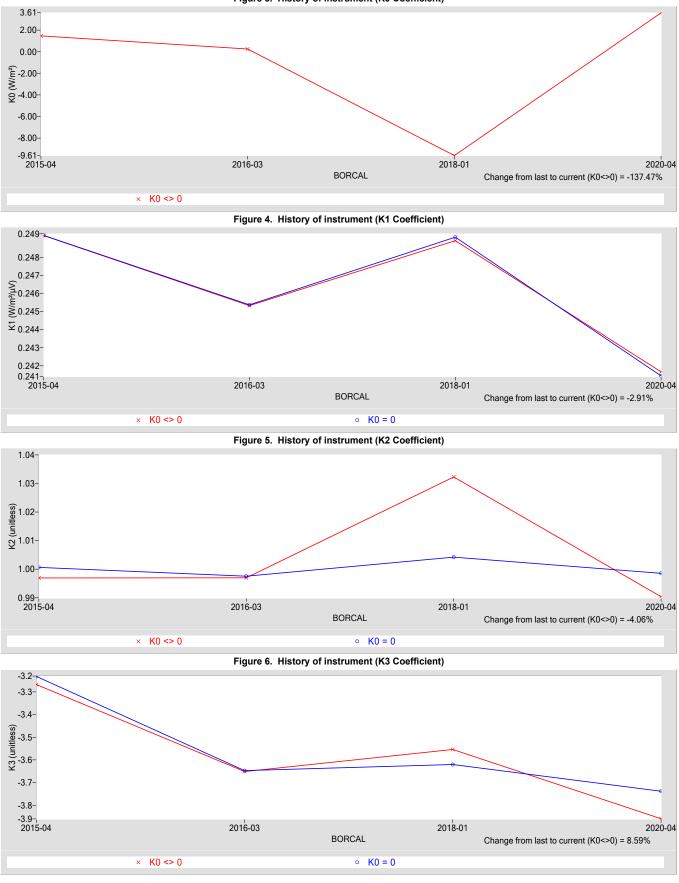

KO	0.0
К1	0.24144
К2	0.9985
К3	-3.74
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.41
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.2

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

Figure 3. History of instrument (K0 Coefficient)

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	32050F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	NSA	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 32050F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

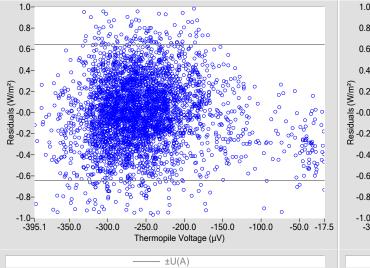
 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

K0,K1,K2,K3 V	= calibration coefficeints,= thermopile output voltage (μV),
	= dome irradiance (W/m ²), = dome temperature (K),

$$\begin{split} & \textit{Wr} = \sigma * \textit{Tr}^{A}\textit{4} = \text{receiver irradiance (W/m^{2}),} \\ & \text{where,} \quad \sigma = 5.6704\text{e-8} \text{ W}\cdot\text{m-2}\cdot\text{K-4}, \\ & \textit{Tr} = \textit{Tc} + \textit{Kr} * \textit{V} = \text{receiver temperature (K),} \\ & \textit{Tc} = \text{case temperature (K),} \\ & \textit{Kr} = \text{efficiency coefficient (K/\muV).} \end{split}$$



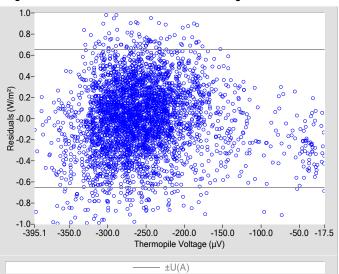

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

Table 2. Calibration Coefficients for K0<>0

KO	1.5
К1	0.22987
К2	0.9948
КЗ	-3.39
Kr used to derive coefficients	7.044e-4

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.33
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.1

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

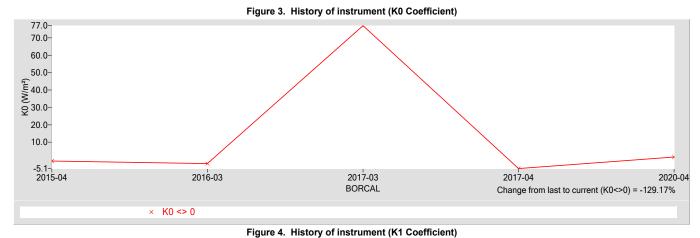


Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.22979
K2	0.9982
К3	-3.35
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.33
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.1

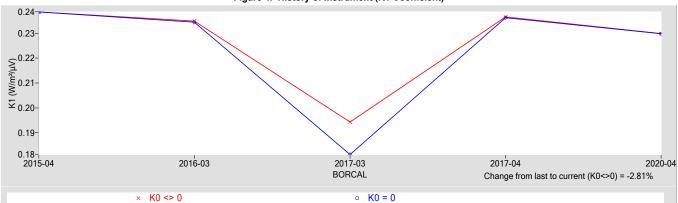
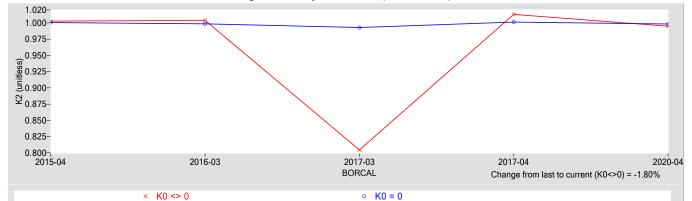
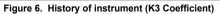
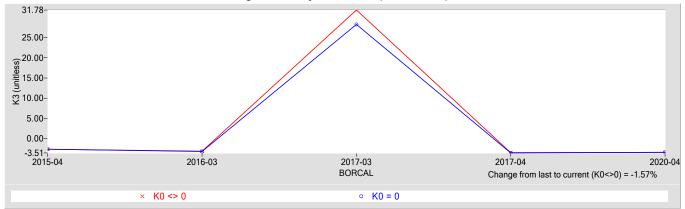





Figure 5. History of instrument (K2 Coefficient)

References:

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	36363F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 36363F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

K0,K1,K2,K3 V	= calibration coefficeints,= thermopile output voltage (μV),
	= dome irradiance (W/m²),
where, Td	= dome temperature (K),

$$\begin{split} & \textit{Wr} = \sigma * \textit{Tr}^{A} = \text{receiver irradiance (W/m^{2}),} \\ & \text{where,} \quad \sigma = 5.6704\text{e-8 W}\cdot\text{m-2}\cdot\text{K-4}, \\ & \textit{Tr} = \textit{Tc} + \textit{Kr} * \textit{V} = \text{receiver temperature (K),} \\ & \textit{Tc} = \text{case temperature (K),} \\ & \textit{Kr} = \text{efficiency coefficient (K/\muV).} \end{split}$$

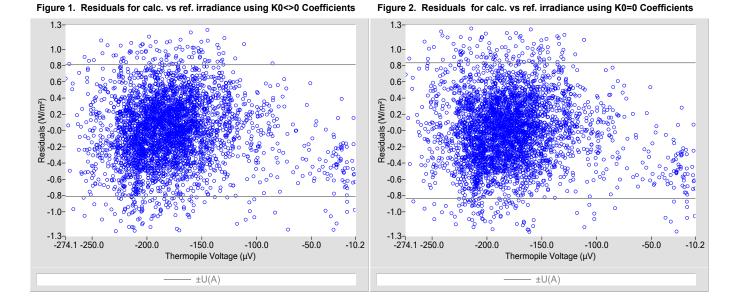


Table 2. Calibration Coefficients for K0<>0

KO	-2.5
К1	0.33042
К2	1.0098
КЗ	-4.60
Kr used to derive coefficients	7.044e-4

Table 4. Uncertainty using K0<>0 Coefficients

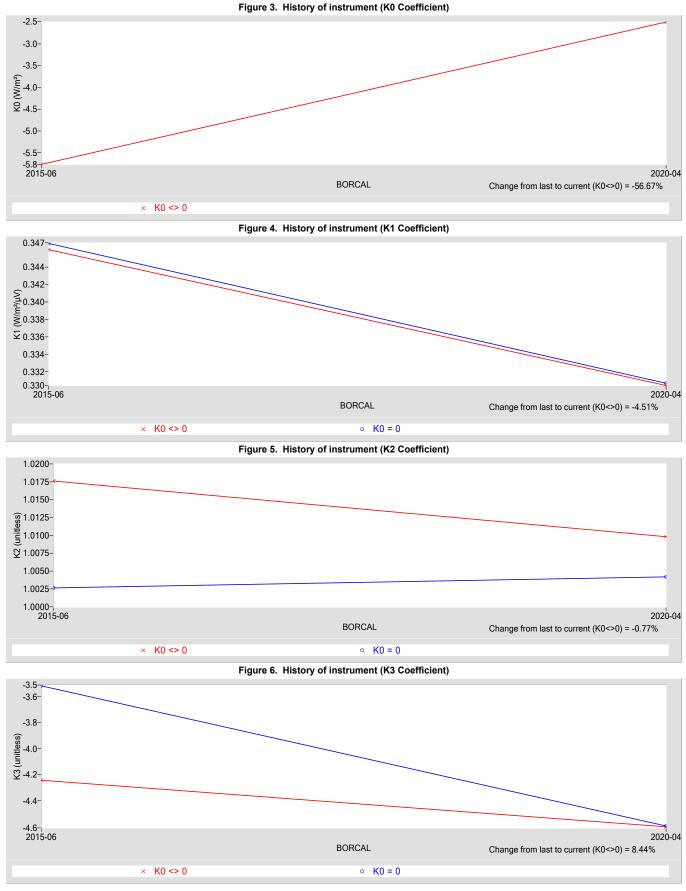

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.41
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.2

Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.33068
K2	1.0042
К3	-4.59
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.43
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.2

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	36368F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 36368F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

K0,K1,K2,K3	= calibration coefficeints,
V	= thermopile output voltage (µV),
$Wd = \sigma * Td^4$	= dome irradiance (W/m ²),
where, Td	= dome temperature (K),

$$\begin{split} & \textit{Wr} = \sigma * \textit{Tr}^{A}\textit{4} = \text{receiver irradiance (W/m^{2}),} \\ & \text{where,} \quad \sigma = 5.6704\text{e-8} \text{ W}\cdot\text{m-2}\cdot\text{K-4}, \\ & \textit{Tr} = \textit{Tc} + \textit{Kr} * \textit{V} = \text{receiver temperature (K),} \\ & \textit{Tc} = \text{case temperature (K),} \\ & \textit{Kr} = \text{efficiency coefficient (K/\muV).} \end{split}$$

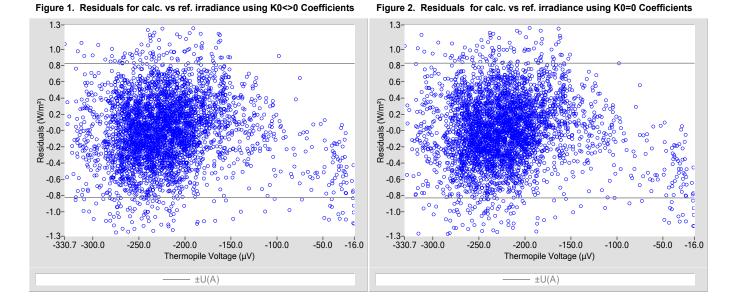
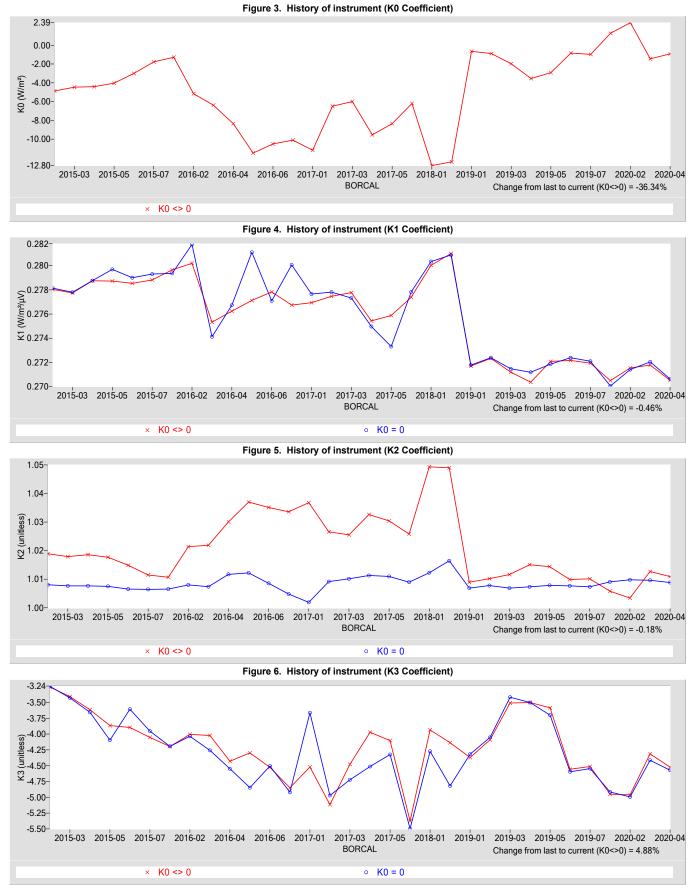


Table 2. Calibration Coefficients for K0<>0

KO	-0.9
К1	0.27052
К2	1.0109
К3	-4.52
Kr used to derive coefficients	7.044e-4

Table 4. Uncertainty using K0<>0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.42
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.2


Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.27064
K2	1.0089
К3	-4.57
Kr used to derive coefficients	7.044e-4

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.42
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.2

BORCAL-LW 2020-04 / Certificate

Metrology Laboratory

Calibration Certificate

Test Instrument:	Downwelling Pyrgeometer (Ventilated)	Manufacturer:	Eppley
Model:	PIR	Serial Number:	36370F3
Calibration Date:	9/14/2020	Due Date:	9/14/2022
Customer:	SGP	Environmental Conditions:	see page 4
Test Dates:	8/5-27, 9/1-8, 9/12-14		

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1206	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1207	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2009-1208	01/03/2020	01/03/2021
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/03/2020	01/03/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29590F3	04/02/2019	04/02/2021
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer (Ventilated) Model PIR-V, S/N 29927F3	04/02/2019	04/02/2021

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

ARM

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Peter Gotseff and Craig Webb

Peter Gotseff, Technical Manager

Date

For questions or comments, please contact the technical manager at:

Calibration Results 36370F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

 $Win = K0 + K1^*V + K2^*Wr + K3^*(Wd - Wr)$

[1]

where,

K0,K1,K2,K3	= calibration coefficeints,
V	= thermopile output voltage (µV),
$Wd = \sigma * Td^4$	= dome irradiance (W/m ²),
where, Td	= dome temperature (K),

$$\begin{split} & \textit{Wr} = \sigma * \textit{Tr}^{A}\textit{4} = \text{receiver irradiance (W/m^{2}),} \\ & \text{where,} \quad \sigma = 5.6704\text{e-8} \text{ W}\cdot\text{m-2}\cdot\text{K-4}, \\ & \textit{Tr} = \textit{Tc} + \textit{Kr} * \textit{V} = \text{receiver temperature (K),} \\ & \textit{Tc} = \text{case temperature (K),} \\ & \textit{Kr} = \text{efficiency coefficient (K/\muV).} \end{split}$$

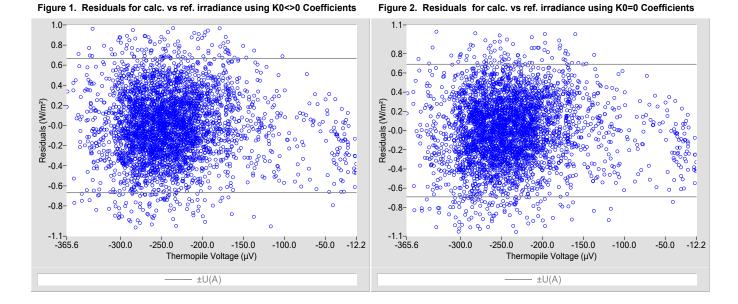


Table 2. Calibration Coefficients for K0<>0

KO	1.9
К1	0.23899
К2	0.9962
К3	-3.91
Kr used to derive coefficients	7.044e-4

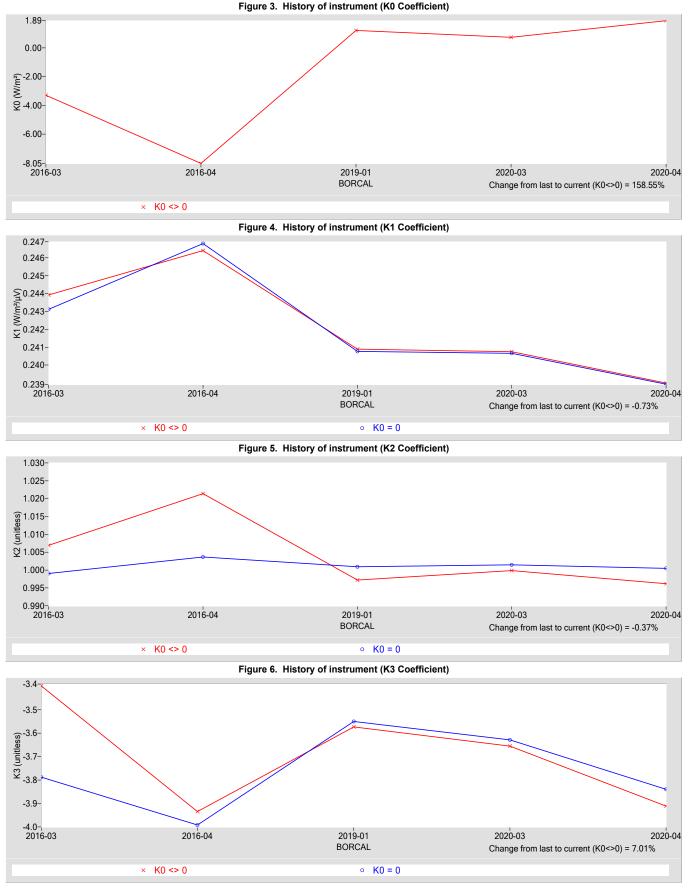

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.34
Combined Standard Uncertainty, $u(c) (W/m^2)$	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.1

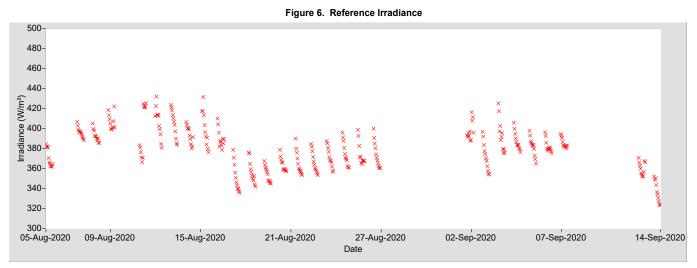
Table 3. Calibration Coefficients for K0=0

KO	0.0
К1	0.23893
К2	1.0005
К3	-3.84
Kr used to derive coefficients	7.044e-4

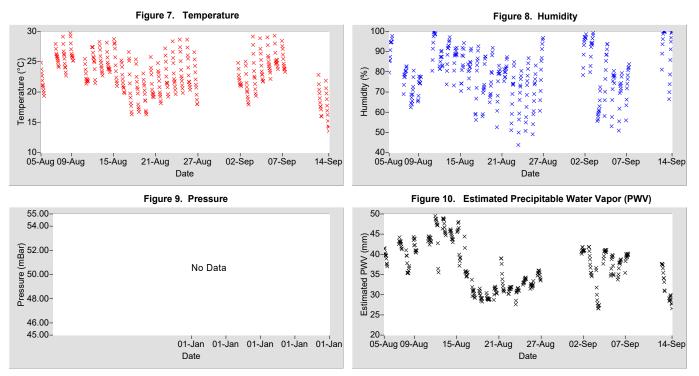
Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.6
Type-A Standard Uncertainty, u(A) (W/m²)	±0.35
Combined Standard Uncertainty, u(c) (W/m ²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m ²)	±3.1

Environmental and Sky Conditions for BORCAL-LW 2020-04


Calibration Facility: Southern Great Plains

Latitude: 36.605°N Longitude: 97.488°W


Elevation: 317.0 meters AMSL

Time Zone: -6.0

Reference Irradiance (hourly averages):

Meteorological Observations (hourly averages):

Table 6. Meteorological Observations

Observations	Mean	Min	Max
Temperature (°C)	22.79	13.19	30.14
Humidity (%)	79.51	42.07	100.05
Pressure (mBar)	N/A	N/A	N/A
Est. Precipitable Water Vapor (mm)	36.6	26.1	49.7

For other information about the calibration facility visit: <u>https://www.arm.gov/capabilities/observatories/sgp</u>

Appendix 2 BORCAL Notes

Instrument, Configuration, and Session Notes for the BORCAL

BORCAL Notes

Facility: Southern Great Plains Comments: Avg. Station Pressure and Temperature is for Tulsa, OK, which is used for the Solar Position Algorithm (SPA).

Appendix 3 Session Configuration Audit Report

Latest Session Configuration Audit Report for the BORCAL

BORCAL/LW 2020-04 Session Configuration Audit Report

		200/1							
Facility	Facility Abbrev.	Contact	Latitude	Longitude	Elevation (m)	Avg press (mbr)	Avg temp (C)	Time zone	ISO
Southern Great Plains	SGP	Craig Webb	36.605	-97.488	317.0	992.0	15.0	-6.0	

	SYSTEM		METEOROLOGICAL INSTRUMENTS — Channel Junction Box Cable Location
% Error Thresholds TP(x) / TP(x-1) 25.0 Delta Thresholds	Analysis Rejection Threshold 1 (Blue) 3.000 Threshold 2 (Green) 4.000 Threshold 3 (Brown) 5.000 No. of Std. Dev. 3 Clock Reset Interval (m) 30 Warning Threshold (s) Delta UT1 -0.100	Misc Scan Rate (s) 300 Uncert. Significant Figures 2 Auto Mode Zenith Angle Afternoon Startup 94 Morning Shutdown 94 Solar Position Algorithm Delta T (s) 69.284 Atmos. Refraction (deg) 0.5667	Temperature: E0710025T Vaisala HMP155 T 239 Temp Scale 100 Offset 40 Humidity: E0710025H Vaisala HMP155 H 255 Hum 255 9 Scale 100 Offset 0 0 9 1 8 8 9 9 1 8 8 8 9 1 1 8 8 8 9 1 1 8

	Logger/Relay DMM							Communications										
Unit 1 🛛	2009-1207	7 NREL RAP-DA	Q	MY420028	64 Agilent 3442	0A		Unit	Туре	Addr.	Board	Parity	Stop	Data				
Unit 0 🛛	2009-1206	NREL RAP-DA	.Q	MY42002863 Agilent 34420A				1	GPIB	22	0	0	0	0				
Unit 3 2014-1302 NREL RAP-DAQ				SG420005	96 Agilent 3442	0A	Relay	1	GPIB	25	1	0	0	0				
Unit 2 2009-1208 NREL RAP-DAQ MY42002866 A					66 Agilent 3442	0A	DMM	0	GPIB	21	0	0	0	0				
			11-14	11-12-0	11-14-0	11-14-0	Relay	0	GPIB	24	1	0	0	0				
			Unit 1	Unit 0	Unit 3	Unit 2	DMM	3	GPIB	1	0	0	0	0				
			01/03/2020	01/03/2020	01/03/2020	01/03/2020	Datas	3	GPIB	4	1	0	0	0				
		Cal Due Date	01/03/2021	01/03/2021	01/03/2021	01/03/2021	Relay	3	-		1	0	0					
System (Offsets:	Volts DC (µV)	1.41	1.41	1.41	1.41	DMM	2	GPIB	23	0	0	0	0				
2-Wire Res. (mOhms) 2			2571.00	2571.00	2571.00	Relay	2	GPIB	26	1	0	0	0					
		Res. (mOhms)		0.00	0.00	0.00												

09/17/2020 10:40

BORCAL/LW 2020-04 Session Configuration Audit Report

PYRGEOMETER REFERENCE INSTRUMENTS

				Calibration	n Coefficier	nts	Uncert.	Max Out				
Cal Date	Cal Due Date	K0	K1	K2	K3	Kr	(W/m^2)	(mV)	Channel Junction	Box Cable	Location	Active
Pyrgeomete	er 1: 29590F3	Eppley PII	R-V (Ventil	ated)								
04/02/2019	04/02/2021	9.70000	0.25424	0.97400	-4.07000	7.04400E-4	2.70	9	71	2	T6-2	
Pyrgeometer	1: Case 10K Te	mperature							67	2		
Pyrgeometer	1: Dome 10K T	emperature							75	2		
Pyrgeomete	er 2: 29927F3	Eppley PII	R-V (Ventil	ated)								
04/02/2019	04/02/2021	5.20000	0.26417	0.99030	-3.94000	7.04400E-4	2.70	9	23	2	T5-2	
Pyrgeometer	2: Case 10K Te	mperature							19	2		
Pyrgeometer	2: Dome 10K T	emperature							27	2		

09/17/2020 10:40

BORCAL/LW 2020-04 Session Configuration Audit Report

erial Number / Model	Customer	Mfg RS	Ch	Box	Cable	Act	ISO	AIM	Stickr	Vent	Use	Kr	Location	Du
29146F3	SGP	3.6900	98		37	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	37/43	24
PIR	(Case 10K Temperature)		106		37									
	(Dome 10K Temperature)		24		43									
29591F3	SGP	4.1900	208		30	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	30	24
PIR	(Case 10K Temperature)		216		30									
	(Dome 10K Temperature)		224		30									
29665F3	SGP	3.9200	113		55	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	55/61	24
PIR	(Case 10K Temperature)		121		55									
	(Dome 10K Temperature)		40		61									
29924F3	SGP	3.8600	114		56	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	56/62	24
PIR	(Case 10K Temperature)		122		56									
	(Dome 10K Temperature)		41		62									
30011F3	SGP	3.5900	82		29	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	29/18	24
PIR	(Case 10K Temperature)		90		29									
	(Dome 10K Temperature)		18		18									
30012F3	(Dome for temperature) TWP	3.4300	135		3	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T7-3	24
PIR		3.4300	131		3	103	NO	103	10-0	103	110	7.0440-4	17-5	27
FIIX	(Case 10K Temperature)		139		3									
30032F3	(Dome 10K Temperature)	4.0400				Vaa	No	Vaa	K0-0	Vaa	DVC	7.044e-4	57/58	2/
	SGP	4.0400	128		57	Yes	No	res	K0=0	res	Pig	7.044e-4	57/58	24
PIR	(Case 10K Temperature)		136		57									_
	(Dome 10K Temperature)		137		58									
30085F3	SGP	4.0800	144		65	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	65/45	24
PIR	(Case 10K Temperature)		152		65									_
	(Dome 10K Temperature)		26		45									
30131F3	TWP	3.7700	61		3	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	3/5/7	24
PIR	(Case 10K Temperature)		1		5									
	(Dome 10K Temperature)		8		7									
30132F3 ‡	SGP	3.9000	231		3	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T9-3	24
PIR	(Case 10K Temperature)		227		3									
	(Dome 10K Temperature)		235		3									
30167F3	TWP	4.5100	199		1	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T9-1	24
PIR	(Case 10K Temperature)		195		1									
	(Dome 10K Temperature)		203		1									
30168F3	NSA	2.6100	39		3	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T5-3	24
PIR	(Case 10K Temperature)		35		3									
	(Dome 10K Temperature)		43		3									
30357F3	SGP	3.8800	119		2	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T7-2	24
PIR	(Case 10K Temperature)		115		2									
	(Dome 10K Temperature)		123		2									
30681F3	SGP	3.8100	183		3	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	Т8-3	24
PIR	(Case 10K Temperature)		179		3									
	(Dome 10K Temperature)		187		3									
30690F3	SGP	3.6200	55		1	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T6-1	24
PIR		0.0200	51		1	103	110	103	10-0	103	0	1.0740-4	10-1	
F IIX	(Case 10K Temperature)													_
2060252	(Dome 10K Temperature)	2 4000	59		1	V	N -	V	K0-0	V	DVC	7 0 4 4 - 4	0.0	-
30692F3	SGP	3.4800	232		83	Yes	No	res	K0=0	res	PYG	7.044e-4	83	24
PIR	(Case 10K Temperature)		240		83									
	(Dome 10K Temperature)		248		83									

INSTRUMENTS

‡ Control Instrument

09/17/2020 10:40

BORCAL/LW 2020-04 Session Configuration Audit Report

erial Number / Model	Customer	Mfg RS	Ch	Box	Cable	Act	ISO	AIM	Stickr	Vent	Use	Kr	Location	Du
30781F3	SGP	3.7300	96	1	31	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	31/32	24
PIR	(Case 10K Temperature)		104		31									
	(Dome 10K Temperature)		105		32									
30828F3	SGP	4.2400	145		73	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	73/53	24
PIR	(Case 10K Temperature)		153		73									
	(Dome 10K Temperature)		33		53									
30830F3	SGP	3.7900	112		46	No	No	Yes	K0=0	Yes	PYG	7.044e-4	46/52	24
PIR	(Case 10K Temperature)		120		46									
	(Dome 10K Temperature)		32		52									
30834F3	SGP	3.7500	81		28	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	28/17	24
PIR	(Case 10K Temperature)		89		28									
	(Dome 10K Temperature)		17		17									
30836F3	SGP	3.9300	130		64	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	64/44	24
PIR	(Case 10K Temperature)		138		64									
	(Dome 10K Temperature)		25		44									
31236F3	SGP	3.6500	161		84	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	84/85	24
PIR	(Case 10K Temperature)		169		84									
	(Dome 10K Temperature)		170		85									
31298F3	TWP	3.8500	49		10	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	10/16	24
PIR	(Case 10K Temperature)		57		10							-		
	(Dome 10K Temperature)		16		16									
31299F3	NSA	4.2000	87		3	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T6-3	24
PIR	(Case 10K Temperature)		83		3									
	(Dome 10K Temperature)		91		3									
31301F3	TWP	3.3400	160		82	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	82/63	24
PIR	(Case 10K Temperature)	0.0100	168		82	100		100	110 0	100	110	1.0110 1	02,00	-
	(Dome 10K Temperature)		42		63									
31302F3	TWP	3.5900	60		2	Yes	No	Vac	K0-0	Vas	PVG	7.044e-4	2/4/6	24
PIR	(Case 10K Temperature)	5.5500	0		4	103	NO	103	10-0	103	110	7.0440-4	2/4/0	27
1 11 1	(Dome 10K Temperature)		2		6									
31303F3	TWP	3.4800	48		1	Yes	No	Vac	K0=0	Voc	PVC	7.044e-4	1/8	24
PIR	(Case 10K Temperature)	3.4000	56		1	103	NO	103	10-0	103	110	7.0440-4	1/0	27
FIIN	(Dome 10K Temperature)		9		8									
31308F3	TWP	3.1400	50		11	Yes	No	Vaa	K0-0	Voc	DVC	7.044e-4	11/12	24
PIR	(Case 10K Temperature)	5.1400	58			165	NU	163	K0=0	165	FIG	7.0446-4	11/12	24
PIK	(Case Tok Temperature)		50 72		11 12									
2120052	(Dome TOK Temperature)	2 9700				No	No	Vaa	K0-0	Vaa	DVC	7.0440.4	12/14	11
31309F3		3.8700	65		13	No	No	res	K0=0	res	PIG	7.044e-4	13/14	12
PIR	(Case 10K Temperature)		73		13									
0404450	(Dome 10K Temperature)	0.0000	74		14			N.	140 0		DVO	7.044.4	10/0	
31311F3	TWP	3.8200	80		19	Yes	No	res	KU=0	Yes	PYG	7.044e-4	19/9	24
PIR	(Case 10K Temperature)		88		19									
0404050	(Dome 10K Temperature)	4.0555	10		9	V		N N	1/2 5	V	D) (2	7.044		+-
31640F3	SGP	4.0500	146		74	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	74/54	24
PIR	(Case 10K Temperature)		154		74									
	(Dome 10K Temperature)	+	34		54									
32040F3	NSA	3.8000	103		1	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T7-1	24
PIR	(Case 10K Temperature)		99		1									
	(Dome 10K Temperature)		107		1									

09/17/2020 10:40

BORCAL/LW 2020-04 Session Configuration Audit Report

Serial Number / Model Customer Mfg RS Ch ISO AIM Stickr Vent Use Kr Location Due Box Cable Act 32050F3 NSA 3.7700 7 1 Yes No Yes K0=0 Yes PYG 7.044e-4 T5-1 24 PIR (Case 10K Temperature) 3 1 (Dome 10K Temperature) 11 1 24 36363F3 SGP 2.7500 151 1 Yes No Yes K0=0 Yes PYG 7.044e-4 T8-1 PIR (Case 10K Temperature) 147 1 (Dome 10K Temperature) 155 1 36368F3 ‡ SGP 3.0200 167 2 Yes No Yes K0=0 Yes PYG 7.044e-4 T8-2 24 PIR (Case 10K Temperature) 163 2 (Dome 10K Temperature) 171 2 36370F3 ‡ SGP 3.8300 215 2 Yes No Yes K0=0 Yes PYG 7.044e-4 T9-2 24 PIR (Case 10K Temperature) 211 2 (Dome 10K Temperature) 219 2

‡ Control Instrument