Broadband Outdoor Radiometer Calibration Longwave

BORCAL-LW 2018-04

Calibration Facility Southern Great Plains

Latitude: 36.605°N Longitude: 97.488°W Elevation: 317.0 meters AMSL Time Zone: -6.0

Calibration date 06/06/2018 to 08/10/2018

Report Date August 10, 2018

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.

Broadband Outdoor Radiometer Calibration Report

Table of contents

Introduction	3
Control Instrument history plots	4
Results summary	
Appendix 1 Instrument Details	
Appendix 2 BORCAL Notes	
Appendix 3 Session Configuration Audit Report	

Introduction

This report compiles the calibration results from a Broadband Outdoor Radiometer Calibration (BORCAL). The work was accomplished at the Radiometer Calibration Facility shown on the front of this report. The calibration results reported here are traceable to the World Infrared Standard Group (WISG).

This report includes these sections:

- Control Instruments a group of instruments included in each BORCAL event that provides a measure of process consistency.
- Results Summary a table of all instruments included in this report summarizing their calibration results and uncertainty.
- Instrument Details the calibration certificates and application notes for each instrument.
- Environmental and Sky Conditions meteorological conditions and reference irradiance during the calibration event.

BORCAL-LW 2018-04 / Full Report 3

Control Instrument History

Figure 1. Eppley PIR Control Instrument History (K0 Coefficient)

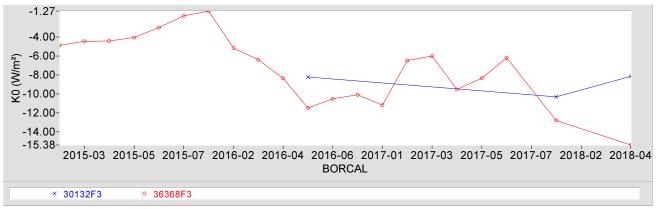


Figure 2. Eppley PIR Control Instrument History (K1 Coefficient)

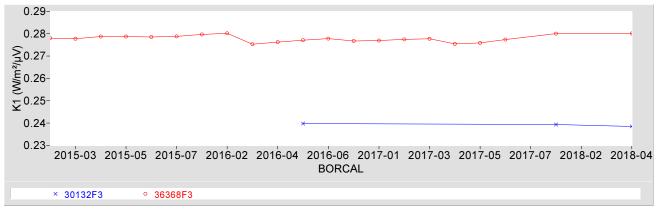


Figure 3. Eppley PIR Control Instrument History (K2 Coefficient)

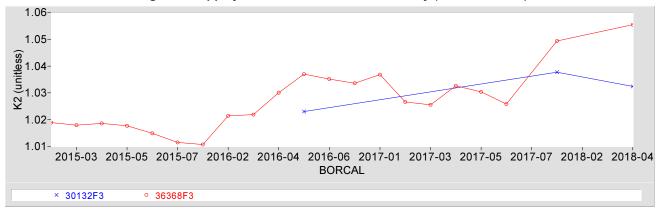
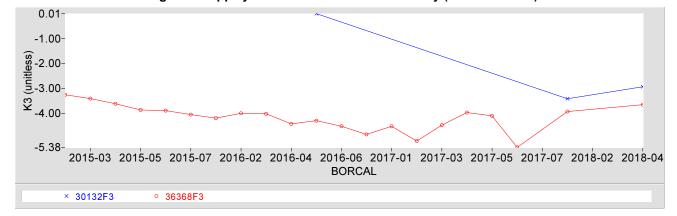



Figure 4. Eppley PIR Control Instrument History (K3 Coefficient)

Results Summary

Table 1. Results Summary

		K0	K1	K2	K 3	Kr *	U95	
Instrument	Customer	(W/m²)	(W/m²/µV)			(K/µV)	(W/m²)	Page
29146F3	SGP	-7.9	0.25460	1.0369	-3.01	7.044e-4	±2.9	A1-2
29591F3	SGP	-12.1	0.22759	1.0402	-2.88	7.044e-4	±2.9	A1-5
30011F3	SGP	-13.6	0.27100	1.0410	-3.38	7.044e-4	±2.9	A1-8
30013F3	SGP	-16.0	0.27935	1.0467	-4.31	7.044e-4	±2.9	A1-11
30132F3	SGP	-8.2	0.23843	1.0324	-2.93	7.044e-4	±2.9	A1-14
30344F3	SGP	-11.9	0.23598	1.0406	-3.33	7.044e-4	±2.9	A1-17
30358F3	SGP	-12.9	0.23231	1.0453	-3.35	7.044e-4	±2.9	A1-20
30782F3	SGP	-7.4	0.23121	1.0322	-2.51	7.044e-4	±2.9	A1-23
30834F3	SGP	-13.7	0.25210	1.0468	-3.31	7.044e-4	±2.9	A1-26
30836F3	SGP	-9.8	0.24348	1.0344	-3.03	7.044e-4	±2.9	A1-29
36367F3	SGP	-13.1	0.31171	1.0427	1.04	7.044e-4	±3.1	A1-32
36368F3	SGP	-15.4	0.28008	1.0554	-3.65	7.044e-4	±2.9	A1-35

Note: Environmental Conditions for BORCAL starts on page A1-38.

 $^{^{\}star}$ Kr used to derive K0,K1,K2, and K3

Appendix 1 Instrument Details

Calibration Certificates: 3 pages for each radiometer (4 including Environmental Conditions)

Environmental Conditions for BORCAL: Last Page of a Calibration Certificate. Note: This appears only once, at the end of Appendix 1.

BORCAL-LW 2018-04 / Full Report A1-1

Metrology Laboratory Calibration Certificate

Test Instrument: Downwelling Pyrgeometer (Ventilated) Manufacturer: Eppley

Model: PIR **Serial Number:** 29146F3

 Calibration Date:
 8/10/2018
 Due Date:
 8/10/2019

Customer: SGP Environmental Conditions: see page 4

Test Dates: 6/6-15, 6/18-23, 6/26-30, 7/1-31, 8/1-10

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/19/2018	01/19/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30835F3	05/08/2017	05/08/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31637F3	06/27/2017	06/27/2019

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for

horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Mike Dooraghi and Craig Webb

Michael Dooraghi, Technical Manager Date

For questions or comments, please contact the technical manager at:

Mike.Dooraghi@nrel.gov; 303-384-6329; 15013 Denver West Parkway, Golden, CO 80401, USA

BORCAL-LW 2018-04 / Certificate Southern Great Plains 29146F3 Eppley PIR Page 1 of 4

29146F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

$$Win = K0 + K1*V + K2*Wr + K3*(Wd - Wr)$$
 [1]

where,

K0,K1,K2,K3 = calibration coefficeints, = thermopile output voltage (µV), $Wd = \sigma * Td^4 = \text{dome irradiance (W/m}^2),$

where, Td = dome temperature (K),

 $Wr = \sigma * Tr^4 = receiver irradiance (W/m^2),$ where, $\sigma = 5.6704e-8 \text{ W} \cdot \text{m}-2 \cdot \text{K}-4$, Tr = Tc + Kr * V = receiver temperature (K),Tc = case temperature (K), Kr = efficiency coefficient (K/ μ V).

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

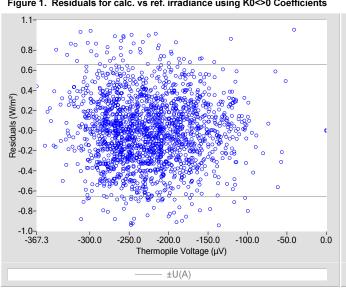


Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

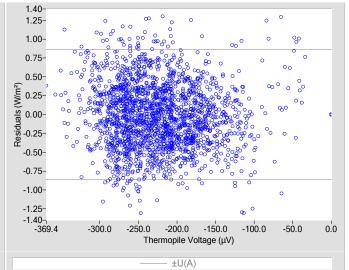
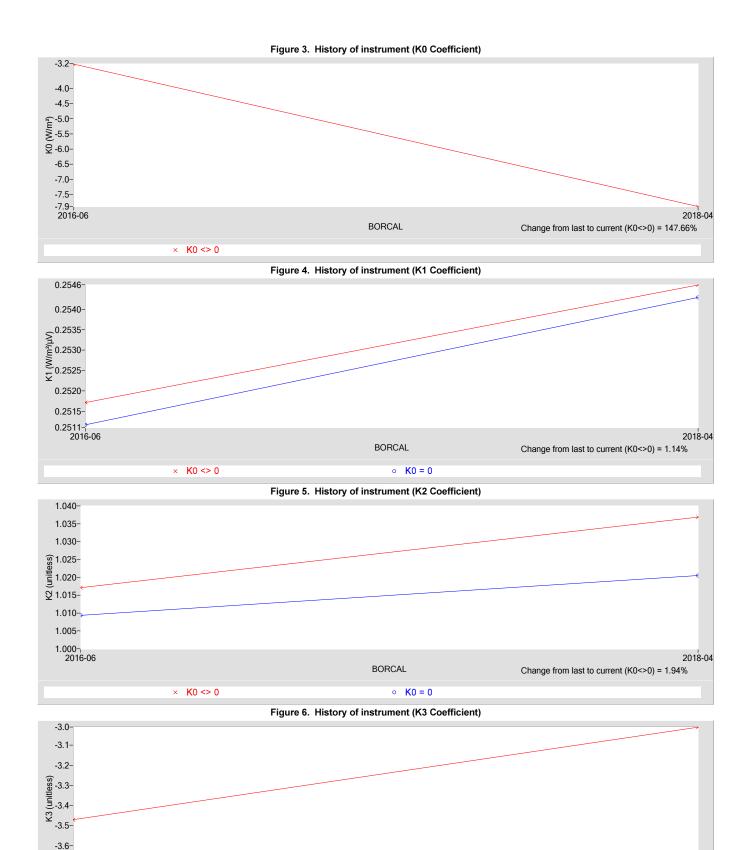


Table 2. Calibration Coefficients for K0<>0

К0	-7.9
K1	0.25460
K2	1.0369
К3	-3.01
Kr used to derive coefficients	7.044e-4

Table 3. Calibration Coefficients for K0=0

К0	0.0
K1	0.25429
К2	1.0205
К3	-3.71
Kr used to derive coefficients	7.044e-4


Table 4. Uncertainty using K0<>0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.33
Combined Standard Uncertainty, u(c) (W/m²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.9

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.44
Combined Standard Uncertainty, u(c) (W/m²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.9

BORCAL-LW 2018-04 / Certificate Southern Great Plains 29146F3 Eppley PIR Page 2 of 4

-3.7 2016-06

× K0 <> 0

[1] Reda, I.; Stoffel, T. (2010). Pyrgeometer Calibration for DOE-Atmospheric System Research Program using NREL Method (Presentation). 9 pp.; NREL Report No. PR-3B0-47756; http://www.nrel.gov/docs/fy10osti/47756.pdf.

BORCAL-LW 2018-04 / Certificate Southern Great Plains 29146F3 Eppley PIR Page 3 of 4

BORCAL

∘ K0 = 0

2018-04

Change from last to current (K0<>0) = -13.23%

Metrology Laboratory Calibration Certificate

Test Instrument: Downwelling Pyrgeometer (Ventilated) Manufacturer: Eppley

Model: PIR Serial Number: 29591F3

Calibration Date: 8/10/2018 **Due Date:** 8/10/2019

Customer: SGP Environmental Conditions: see page 4

Test Dates: 6/6-15, 6/18-23, 6/26-30, 7/1-31, 8/1-10

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/19/2018	01/19/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30835F3	05/08/2017	05/08/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31637F3	06/27/2017	06/27/2019

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for

horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Mike Dooraghi and Craig Webb

------ Michael Dooraghi, Technical Manager Date

For questions or comments, please contact the technical manager at:

Mike.Dooraghi@nrel.gov; 303-384-6329; 15013 Denver West Parkway, Golden, CO 80401, USA

BORCAL-LW 2018-04 / Certificate Southern Great Plains 29591F3 Eppley PIR Page 1 of 4

29591F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

$$Win = K0 + K1*V + K2*Wr + K3*(Wd - Wr)$$
 [1]

where,

K0,K1,K2,K3 = calibration coefficeints, = thermopile output voltage (μV), $Wd = \sigma * Td^4 = \text{dome irradiance (W/m}^2),$

where, Td = dome temperature (K),

 $Wr = \sigma * Tr^4 = receiver irradiance (W/m^2),$ where, $\sigma = 5.6704e-8 \text{ W} \cdot \text{m}-2 \cdot \text{K}-4$, Tr = Tc + Kr * V = receiver temperature (K),Tc = case temperature (K), Kr = efficiency coefficient (K/ μ V).

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

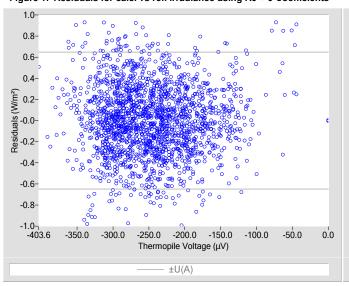


Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

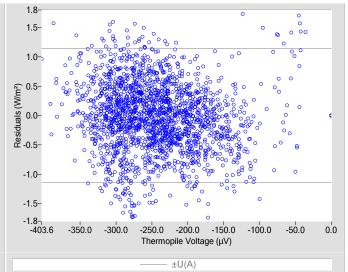


Table 2. Calibration Coefficients for K0<>0

К0	-12.1
K1	0.22759
K2	1.0402
К3	-2.88
Kr used to derive coefficients	7.044e-4

Table 3. Calibration Coefficients for K0=0

Κ0	0.0
K1	0.22730
K2	1.0129
К3	-3.05
Kr used to derive coefficients	7.044e-4

Table 4. Uncertainty using K0<>0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.33
Combined Standard Uncertainty, u(c) (W/m²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.9

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.58
Combined Standard Uncertainty, u(c) (W/m²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.0

BORCAL-LW 2018-04 / Certificate Southern Great Plains 29591F3 Eppley PIR Page 2 of 4

-4.0 2017-02

× K0 <> 0

[1] Reda, I.; Stoffel, T. (2010). Pyrgeometer Calibration for DOE-Atmospheric System Research Program using NREL Method (Presentation). 9 pp.; NREL Report No. PR-3B0-47756; http://www.nrel.gov/docs/fy10osti/47756.pdf.

BORCAL-LW 2018-04 / Certificate Southern Great Plains 29591F3 Eppley PIR Page 3 of 4

BORCAL

∘ K0 = 0

2018-04

Change from last to current (K0<>0) = -28.60%

Metrology Laboratory Calibration Certificate

Test Instrument: Downwelling Pyrgeometer (Ventilated) Manufacturer: Eppley

Model: PIR Serial Number: 30011F3

Calibration Date: 8/10/2018 **Due Date:** 8/10/2019

Customer: SGP Environmental Conditions: see page 4

Test Dates: 6/6-15, 6/18-23, 6/26-30, 7/1-31, 8/1-10

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/19/2018	01/19/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30835F3	05/08/2017	05/08/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31637F3	06/27/2017	06/27/2019

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for

horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Mike Dooraghi and Craig Webb

------ Michael Dooraghi, Technical Manager Date

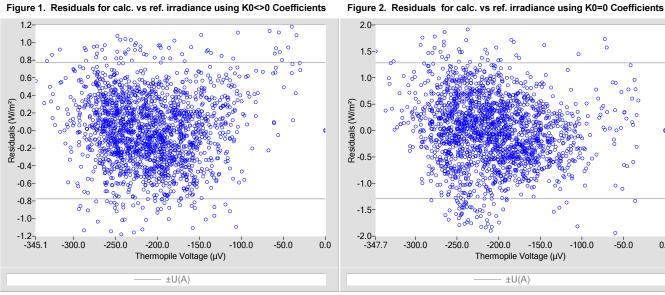
For questions or comments, please contact the technical manager at:

Mike.Dooraghi@nrel.gov; 303-384-6329; 15013 Denver West Parkway, Golden, CO 80401, USA

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30011F3 Eppley PIR Page 1 of 4

30011F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:


$$Win = K0 + K1*V + K2*Wr + K3*(Wd - Wr)$$
 [1]

where,

K0,K1,K2,K3 = calibration coefficeints, = thermopile output voltage (µV), $Wd = \sigma * Td^4 = \text{dome irradiance (W/m}^2),$ where, Td = dome temperature (K),

 $Wr = \sigma * Tr^4 = receiver irradiance (W/m^2),$ where, $\sigma = 5.6704e-8 \text{ W} \cdot \text{m}-2 \cdot \text{K}-4$, Tr = Tc + Kr * V = receiver temperature (K),Tc = case temperature (K), Kr = efficiency coefficient (K/ μ V).

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

2.0-

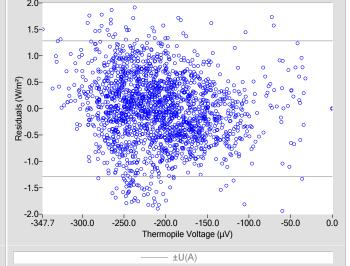
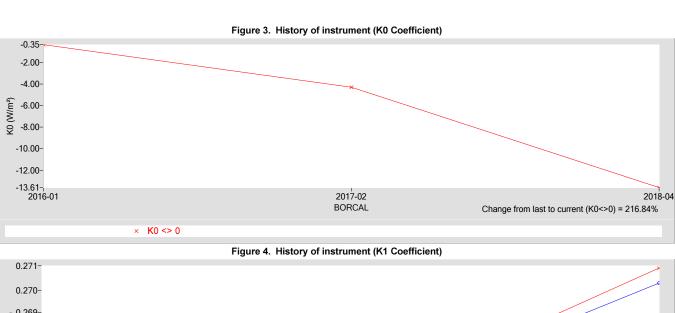


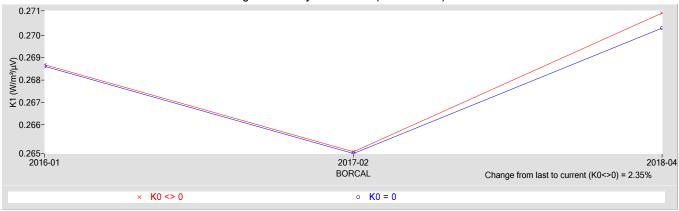
Table 2. Calibration Coefficients for K0<>0

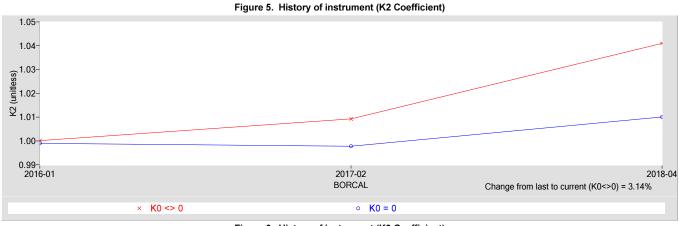
К0	-13.6
K1	0.27100
K2	1.0410
К3	-3.38
Kr used to derive coefficients	7.044e-4

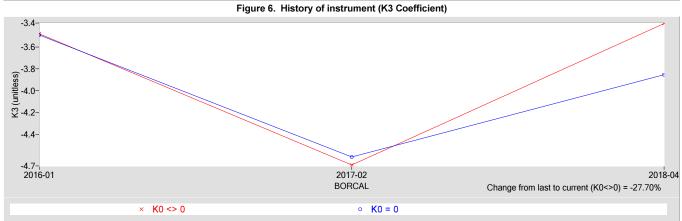
Table 3. Calibration Coefficients for K0=0

Κ0	0.0
K1	0.27033
K2	1.0101
К3	-3.85
Kr used to derive coefficients	7.044e-4


Table 4. Uncertainty using K0<>0 Coefficients


Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.40
Combined Standard Uncertainty, u(c) (W/m²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.9


Table 5. Uncertainty using K0=0 Coefficients


Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.65
Combined Standard Uncertainty, u(c) (W/m²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.1

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30011F3 Eppley PIR Page 2 of 4

[1] Reda, I.; Stoffel, T. (2010). Pyrgeometer Calibration for DOE-Atmospheric System Research Program using NREL Method (Presentation). 9 pp.; NREL Report No. PR-3B0-47756; http://www.nrel.gov/docs/fy10osti/47756.pdf.

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30011F3 Eppley PIR Page 3 of 4
A1-10

Metrology Laboratory Calibration Certificate

Test Instrument: Downwelling Pyrgeometer (Ventilated) Manufacturer: Eppley

Model: PIR Serial Number: 30013F3

Calibration Date: 8/10/2018 **Due Date:** 8/10/2019

Customer: SGP Environmental Conditions: see page 4

Test Dates: 6/6-15, 6/18-23, 6/26-30, 7/1-31, 8/1-10

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/19/2018	01/19/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30835F3	05/08/2017	05/08/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31637F3	06/27/2017	06/27/2019

‡ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for

horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Mike Dooraghi and Craig Webb

------ Michael Dooraghi, Technical Manager Date

For questions or comments, please contact the technical manager at:

Mike.Dooraghi@nrel.gov; 303-384-6329; 15013 Denver West Parkway, Golden, CO 80401, USA

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30013F3 Eppley PIR Page 1 of 4

30013F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

$$Win = K0 + K1*V + K2*Wr + K3*(Wd - Wr)$$
 [1]

where,

K0,K1,K2,K3 = calibration coefficeints, = thermopile output voltage (µV), $Wd = \sigma * Td^4 = \text{dome irradiance (W/m}^2),$

where, Td = dome temperature (K),

Tc = case temperature (K), Kr = efficiency coefficient (K/ μ V).

Tr = Tc + Kr * V = receiver temperature (K),

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

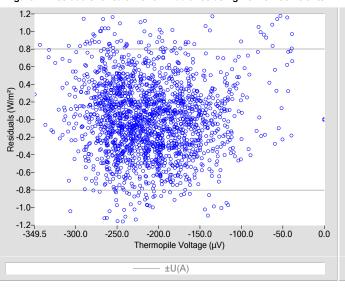


Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

 $Wr = \sigma * Tr^4 = receiver irradiance (W/m^2),$ where, $\sigma = 5.6704e-8 \text{ W} \cdot \text{m}-2 \cdot \text{K}-4$,

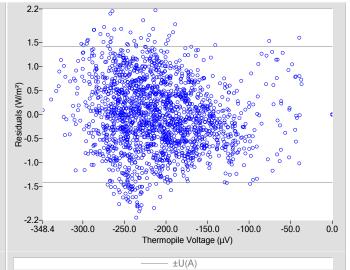
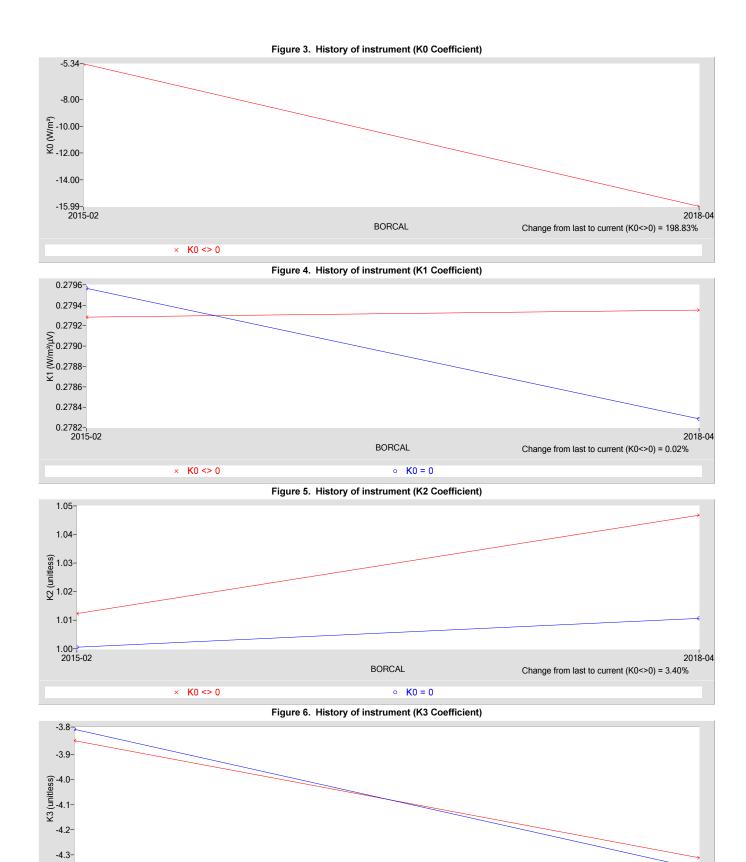


Table 2. Calibration Coefficients for K0<>0

К0	-16.0
K1	0.27935
K2	1.0467
К3	-4.31
Kr used to derive coefficients	7.044e-4

Table 3. Calibration Coefficients for K0=0

K 0	0.0
K 1	0.27829
K2	1.0106
K 3	-4.36
Kr used to derive coefficients	7.044e-4


Table 4. Uncertainty using K0<>0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.41
Combined Standard Uncertainty, u(c) (W/m²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.9

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.72
Combined Standard Uncertainty, u(c) (W/m²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.1

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30013F3 Eppley PIR Page 2 of 4

-4.4-2015-02

[1] Reda, I.; Stoffel, T. (2010). Pyrgeometer Calibration for DOE-Atmospheric System Research Program using NREL Method (Presentation). 9 pp.; NREL Report No. PR-3B0-47756; http://www.nrel.gov/docs/fy10osti/47756.pdf.

Southern Great Plains Page 3 of 4

BORCAL

∘ K0 = 0

× K0 <> 0

2018-04

Change from last to current (K0<>0) = 12.14%

Metrology Laboratory Calibration Certificate

 Test Instrument:
 Downwelling Pyrgeometer (Ventilated)
 Manufacturer:
 Eppley

 Model:
 PIR
 Serial Number:
 30132F3

Customer: SGP Environmental Conditions: see page 4

Test Dates: 6/6-15, 6/18-23, 6/26-30, 7/1-31, 8/1-10

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/19/2018	01/19/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30835F3	05/08/2017	05/08/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31637F3	06/27/2017	06/27/2019

 $\mbox{\rlap{$\ddagger$}}$ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for

horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Mike Dooraghi and Craig Webb

------ Michael Dooraghi, Technical Manager Date

For questions or comments, please contact the technical manager at:

Mike.Dooraghi@nrel.gov; 303-384-6329; 15013 Denver West Parkway, Golden, CO 80401, USA

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30132F3 Eppley PIR Page 1 of 4

30132F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

$$Win = K0 + K1*V + K2*Wr + K3*(Wd - Wr)$$
 [1]

where,

K0,K1,K2,K3 = calibration coefficeints, = thermopile output voltage (μV), $Wd = \sigma * Td^4 = \text{dome irradiance (W/m}^2),$

where, Td = dome temperature (K),

 $Wr = \sigma * Tr^4 = receiver irradiance (W/m^2),$ where, $\sigma = 5.6704e-8 \text{ W} \cdot \text{m}-2 \cdot \text{K}-4$, Tr = Tc + Kr * V = receiver temperature (K),Tc = case temperature (K), Kr = efficiency coefficient (K/ μ V).

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

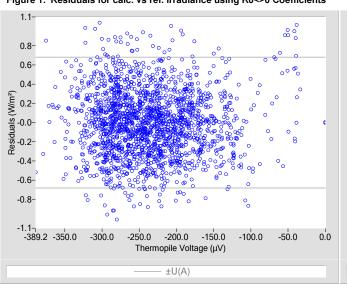


Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

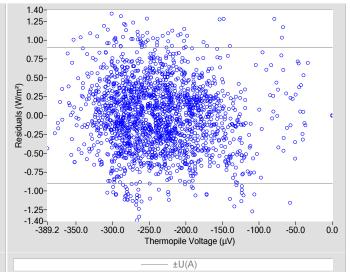
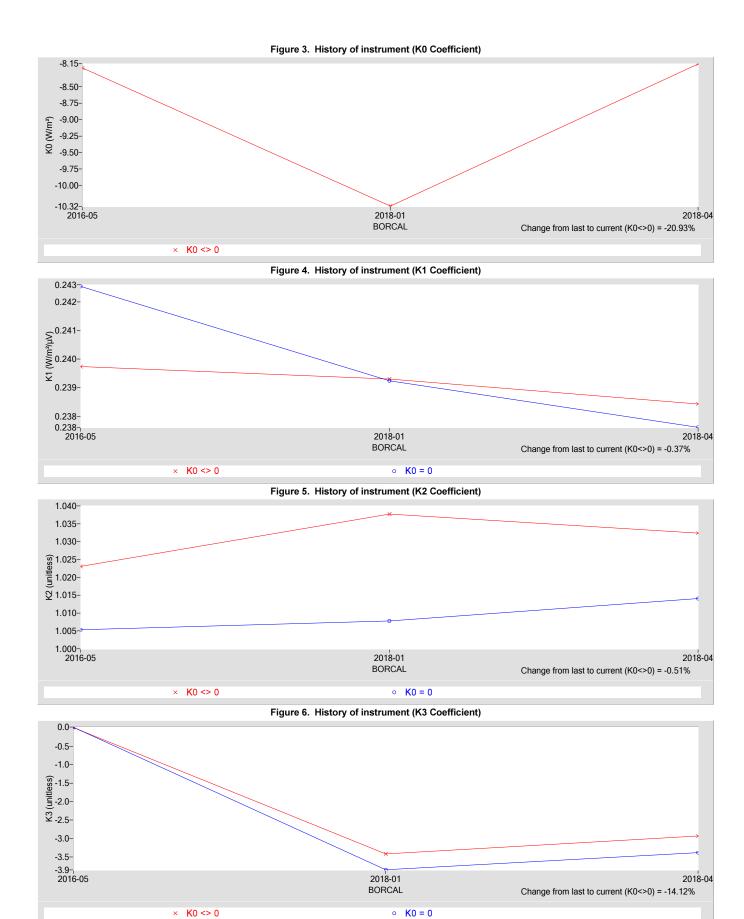


Table 2. Calibration Coefficients for K0<>0

К0	-8.2
K1	0.23843
K2	1.0324
К3	-2.93
Kr used to derive coefficients	7.044e-4

Table 3. Calibration Coefficients for K0=0

K 0	0.0
K 1	0.23761
K2	1.0141
K 3	-3.38
Kr used to derive coefficients	7.044e-4


Table 4. Uncertainty using K0<>0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.35
Combined Standard Uncertainty, u(c) (W/m²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.9

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.46
Combined Standard Uncertainty, u(c) (W/m²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.9

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30132F3 Eppley PIR Page 2 of 4

[1] Reda, I.; Stoffel, T. (2010). Pyrgeometer Calibration for DOE-Atmospheric System Research Program using NREL Method (Presentation). 9 pp.; NREL Report No. PR-3B0-47756; http://www.nrel.gov/docs/fy10osti/47756.pdf.

Southern Great Plains 30132F3 Eppley PIR Page 3 of 4 A1-16

Metrology Laboratory Calibration Certificate

Test Instrument: Downwelling Pyrgeometer (Ventilated) Manufacturer: Eppley

Model: PIR Serial Number: 30344F3

Calibration Date: 8/10/2018 **Due Date:** 8/10/2019

Customer: SGP Environmental Conditions: see page 4

Test Dates: 6/6-15, 6/18-23, 6/26-30, 7/1-31, 8/1-10

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/19/2018	01/19/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30835F3	05/08/2017	05/08/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31637F3	06/27/2017	06/27/2019

 $\mbox{\rlap{$\ddagger$}}$ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for

horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Mike Dooraghi and Craig Webb

------ Michael Dooraghi, Technical Manager Date

For questions or comments, please contact the technical manager at:

Mike.Dooraghi@nrel.gov; 303-384-6329; 15013 Denver West Parkway, Golden, CO 80401, USA

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30344F3 Eppley PIR Page 1 of 4
A1-17

30344F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

$$Win = K0 + K1*V + K2*Wr + K3*(Wd - Wr)$$
 [1]

where,

K0,K1,K2,K3 = calibration coefficeints, = thermopile output voltage (µV), $Wd = \sigma * Td^4 = \text{dome irradiance (W/m}^2),$

where, Td = dome temperature (K),

 $Wr = \sigma * Tr^4 = receiver irradiance (W/m^2),$ where, $\sigma = 5.6704e-8 \text{ W} \cdot \text{m}-2 \cdot \text{K}-4$, Tr = Tc + Kr * V = receiver temperature (K),Tc = case temperature (K), Kr = efficiency coefficient (K/ μ V).

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

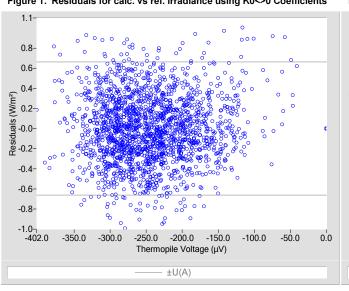


Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

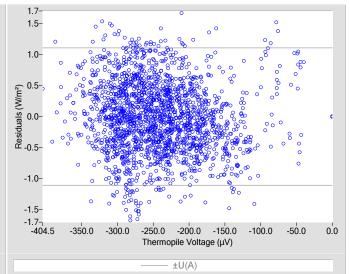
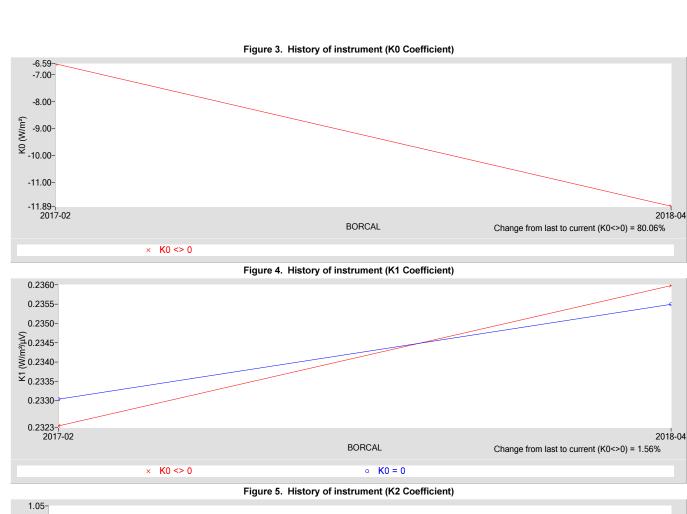


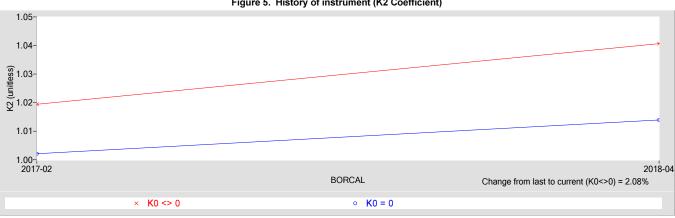
Table 2. Calibration Coefficients for K0<>0

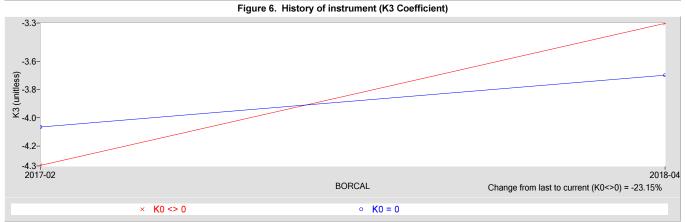
К0	-11.9
K1	0.23598
K2	1.0406
К3	-3.33
Kr used to derive coefficients	7.044e-4

Table 3. Calibration Coefficients for K0=0

K 0	0.0
K 1	0.23550
K2	1.0140
K 3	-3.70
Kr used to derive coefficients	7.044e-4


Table 4. Uncertainty using K0<>0 Coefficients


Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.34
Combined Standard Uncertainty, u(c) (W/m²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.9


Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.56
Combined Standard Uncertainty, u(c) (W/m²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.0

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30344F3 Eppley PIR Page 2 of 4

[1] Reda, I.; Stoffel, T. (2010). Pyrgeometer Calibration for DOE-Atmospheric System Research Program using NREL Method (Presentation). 9 pp.; NREL Report No. PR-3B0-47756; http://www.nrel.gov/docs/fy10osti/47756.pdf.

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30344F3 Eppley PIR Page 3 of 4

Metrology Laboratory Calibration Certificate

Test Instrument: Downwelling Pyrgeometer (Ventilated) Manufacturer: Eppley

Model: PIR Serial Number: 30358F3

 Calibration Date:
 8/10/2018
 Due Date:
 8/10/2019

Customer: SGP Environmental Conditions: see page 4

Test Dates: 6/6-15, 6/18-23, 6/26-30, 7/1-31, 8/1-10

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/19/2018	01/19/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30835F3	05/08/2017	05/08/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31637F3	06/27/2017	06/27/2019

 $\mbox{\rlap{$\ddagger$}}$ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for

horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Mike Dooraghi and Craig Webb

------ Michael Dooraghi, Technical Manager Date

For questions or comments, please contact the technical manager at:

Mike.Dooraghi@nrel.gov; 303-384-6329; 15013 Denver West Parkway, Golden, CO 80401, USA

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30358F3 Eppley PIR Page 1 of 4

30358F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

$$Win = K0 + K1*V + K2*Wr + K3*(Wd - Wr)$$
 [1]

where,

K0,K1,K2,K3 = calibration coefficeints, = thermopile output voltage (µV), $Wd = \sigma * Td^4 = \text{dome irradiance (W/m}^2),$

where, Td = dome temperature (K),

 $Wr = \sigma * Tr^4 = receiver irradiance (W/m^2),$ where, $\sigma = 5.6704e-8 \text{ W} \cdot \text{m}-2 \cdot \text{K}-4$, Tr = Tc + Kr * V = receiver temperature (K),Tc = case temperature (K), Kr = efficiency coefficient (K/ μ V).

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

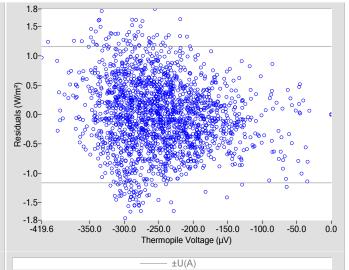
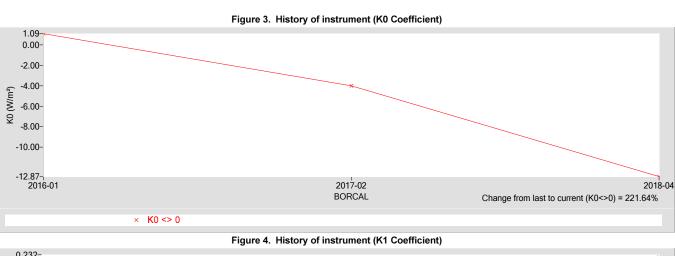


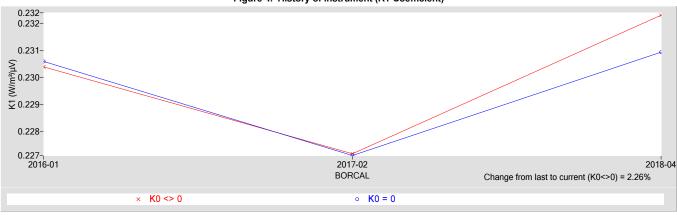
Table 2. Calibration Coefficients for K0<>0

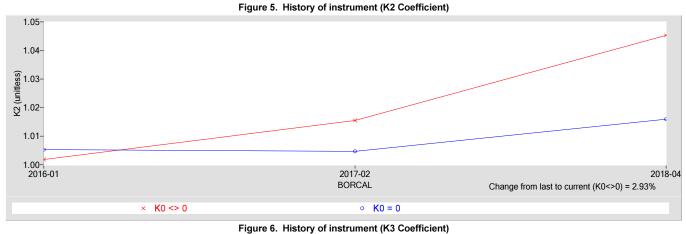
К0	-12.9
K1	0.23231
K2	1.0453
К3	-3.35
Kr used to derive coefficients	7.044e-4

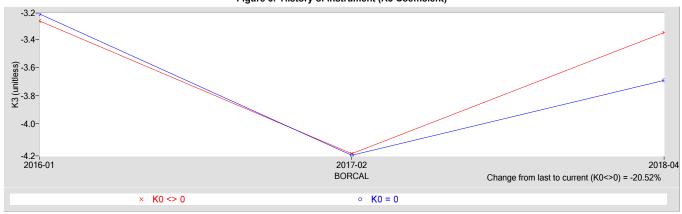
Table 3. Calibration Coefficients for K0=0

Κ0	0.0
K1	0.23094
K2	1.0160
К3	-3.69
Kr used to derive coefficients	7.044e-4


Table 4. Uncertainty using K0<>0 Coefficients


Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.35
Combined Standard Uncertainty, u(c) (W/m²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.9


Table 5. Uncertainty using K0=0 Coefficients


Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.59
Combined Standard Uncertainty, u(c) (W/m²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.0

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30358F3 Eppley PIR Page 2 of 4

[1] Reda, I.; Stoffel, T. (2010). Pyrgeometer Calibration for DOE-Atmospheric System Research Program using NREL Method (Presentation). 9 pp.; NREL Report No. PR-3B0-47756; http://www.nrel.gov/docs/fy10osti/47756.pdf.

BORCAL-LW 2018-04 / Certificate Southern Great Plains Page 3 of 4 A1-22

Metrology Laboratory Calibration Certificate

 Test Instrument:
 Downwelling Pyrgeometer (Ventilated)
 Manufacturer:
 Eppley

 Model:
 PIR
 Serial Number:
 30782F3

Customer: SGP Environmental Conditions: see page 4

Test Dates: 6/6-15, 6/18-23, 6/26-30, 7/1-31, 8/1-10

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/19/2018	01/19/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30835F3	05/08/2017	05/08/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31637F3	06/27/2017	06/27/2019

 $\mbox{\rlap{$\ddagger$}}$ Through the World Infrared Standard Group (WISG)

Number of pages of certificate: 4

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for

horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Mike Dooraghi and Craig Webb

------ Michael Dooraghi, Technical Manager Date

For questions or comments, please contact the technical manager at:

Mike.Dooraghi@nrel.gov; 303-384-6329; 15013 Denver West Parkway, Golden, CO 80401, USA

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30782F3 Eppley PIR Page 1 of 4

30782F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

$$Win = K0 + K1*V + K2*Wr + K3*(Wd - Wr)$$
 [1]

where,

K0,K1,K2,K3 = calibration coefficeints, = thermopile output voltage (µV), $Wd = \sigma * Td^4 = \text{dome irradiance (W/m}^2),$

where, Td = dome temperature (K),

 $Wr = \sigma * Tr^4 = receiver irradiance (W/m^2),$ where, $\sigma = 5.6704e-8 \text{ W} \cdot \text{m}-2 \cdot \text{K}-4$, Tr = Tc + Kr * V = receiver temperature (K),Tc = case temperature (K), Kr = efficiency coefficient (K/ μ V).

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

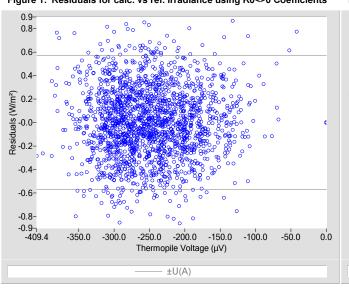


Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

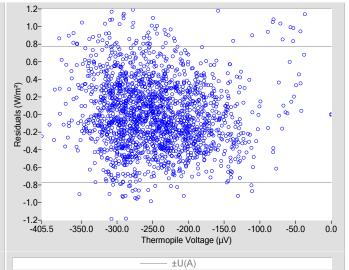
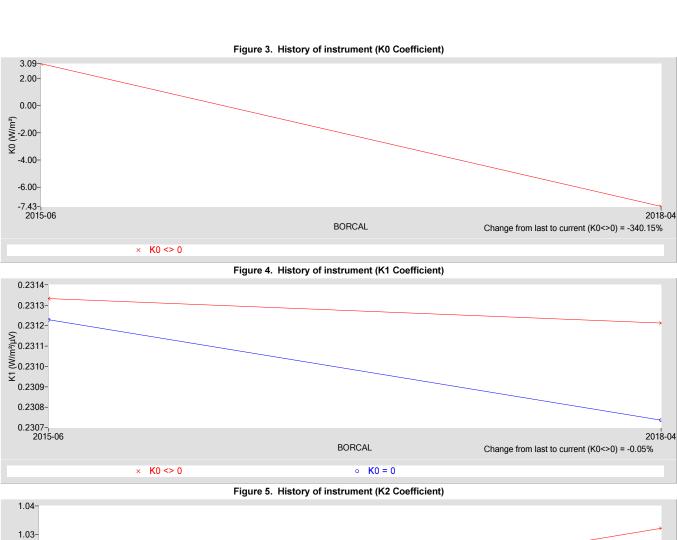


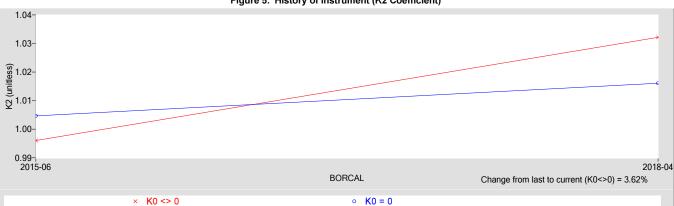
Table 2. Calibration Coefficients for K0<>0

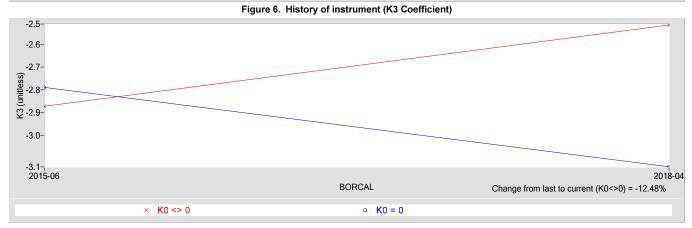
К0	-7.4
K1	0.23121
K2	1.0322
К3	-2.51
Kr used to derive coefficients	7.044e-4

Table 3. Calibration Coefficients for K0=0

К0	0.0
K1	0.23074
K2	1.0161
К3	-3.14
Kr used to derive coefficients	7.044e-4


Table 4. Uncertainty using K0<>0 Coefficients


Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.29
Combined Standard Uncertainty, u(c) (W/m²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.9


Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.39
Combined Standard Uncertainty, u(c) (W/m²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.9

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30782F3 Eppley PIR Page 2 of 4

[1] Reda, I.; Stoffel, T. (2010). Pyrgeometer Calibration for DOE-Atmospheric System Research Program using NREL Method (Presentation). 9 pp.; NREL Report No. PR-3B0-47756; http://www.nrel.gov/docs/fy10osti/47756.pdf.

Page 3 of 4 BORCAL-LW 2018-04 / Certificate Southern Great Plains A1-25

Metrology Laboratory Calibration Certificate

Due Date:

Downwelling Pyrgeometer (Ventilated) **Test Instrument:** Manufacturer: **Eppley** Model: Serial Number: 30834F3

Customer: SGP **Environmental Conditions:** see page 4

Test Dates: 6/6-15, 6/18-23, 6/26-30, 7/1-31, 8/1-10

8/10/2018

Calibration Date:

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/19/2018	01/19/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30835F3	05/08/2017	05/08/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31637F3	06/27/2017	06/27/2019

‡ Through the World Infrared Standard Group (WISG)

8/10/2019

Number of pages of certificate:

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for

horizontal measurements, with their signal connectors oriented north, if their design permits.

Mike Dooraghi and Craig Webb Calibrated by:

> Michael Dooraghi, Technical Manager Date

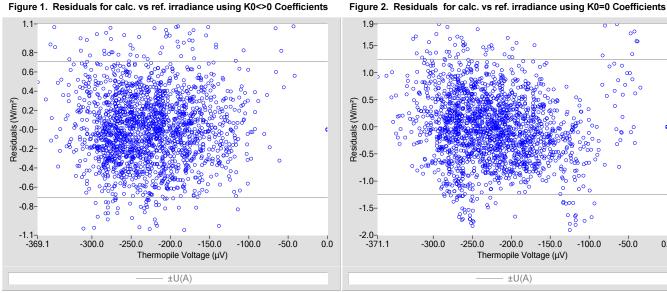
For questions or comments, please contact the technical manager at:

Mike.Dooraghi@nrel.gov; 303-384-6329; 15013 Denver West Parkway, Golden, CO 80401, USA

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30834F3 Eppley PIR Page 1 of 4 A1-26

30834F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:


$$Win = K0 + K1*V + K2*Wr + K3*(Wd - Wr)$$
 [1]

where,

K0,K1,K2,K3 = calibration coefficeints, = thermopile output voltage (µV), $Wd = \sigma * Td^4 = \text{dome irradiance (W/m}^2),$ where, Td = dome temperature (K),

 $Wr = \sigma * Tr^4 = receiver irradiance (W/m^2),$ where, $\sigma = 5.6704e-8 \text{ W} \cdot \text{m}-2 \cdot \text{K}-4$, Tr = Tc + Kr * V = receiver temperature (K),Tc = case temperature (K), Kr = efficiency coefficient (K/ μ V).

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

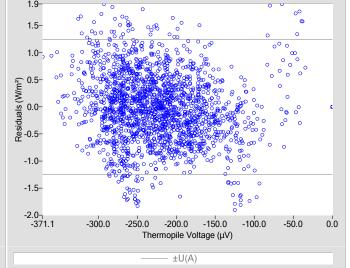
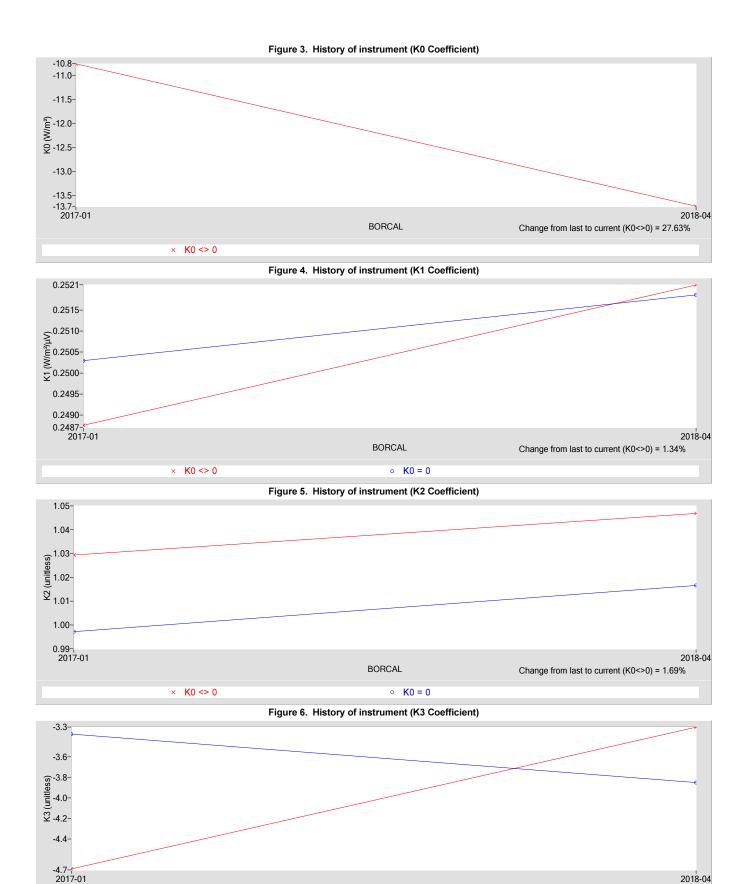


Table 2. Calibration Coefficients for K0<>0

К0	-13.7
K1	0.25210
K2	1.0468
К3	-3.31
Kr used to derive coefficients	7.044e-4

Table 3. Calibration Coefficients for K0=0

K 0	0.0
K 1	0.25186
K2	1.0166
K 3	-3.85
Kr used to derive coefficients	7.044e-4


Table 4. Uncertainty using K0<>0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.36
Combined Standard Uncertainty, u(c) (W/m²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.9

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.64
Combined Standard Uncertainty, u(c) (W/m²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.1

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30834F3 Eppley PIR Page 2 of 4

[1] Reda, I.; Stoffel, T. (2010). Pyrgeometer Calibration for DOE-Atmospheric System Research Program using NREL Method (Presentation). 9 pp.; NREL Report No. PR-3B0-47756; http://www.nrel.gov/docs/fy10osti/47756.pdf.

Southern Great Plains Page 3 of 4

BORCAL

∘ K0 = 0

× K0 <> 0

Change from last to current (K0<>0) = -29.41%

Metrology Laboratory Calibration Certificate

Due Date:

Test Instrument: Downwelling Pyrgeometer (Ventilated) Manufacturer: Eppley

Model: PIR Serial Number: 30836F3

Customer: SGP Environmental Conditions: see page 4

Test Dates: 6/6-15, 6/18-23, 6/26-30, 7/1-31, 8/1-10

8/10/2018

Calibration Date:

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/19/2018	01/19/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30835F3	05/08/2017	05/08/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31637F3	06/27/2017	06/27/2019

‡ Through the World Infrared Standard Group (WISG)

8/10/2019

Number of pages of certificate: 4

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for

horizontal measurements, with their signal connectors oriented north, if their design permits.

Calibrated by: Mike Dooraghi and Craig Webb

------ Michael Dooraghi, Technical Manager Date

For questions or comments, please contact the technical manager at:

Mike.Dooraghi@nrel.gov; 303-384-6329; 15013 Denver West Parkway, Golden, CO 80401, USA

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30836F3 Eppley PIR Page 1 of 4

30836F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

$$Win = K0 + K1*V + K2*Wr + K3*(Wd - Wr)$$
 [1]

where,

K0,K1,K2,K3 = calibration coefficeints, V = thermopile output voltage (μ V), $Wd = \sigma * Td^4$ = dome irradiance (W/m^2),

where, Td = dome irradiance (Wiff)

 $Wr = \sigma * Tr^4 = \text{receiver irradiance (W/m}^2),$ where, $\sigma = 5.6704e-8 \text{ W·m-}2\cdot \text{K-4},$ Tr = Tc + Kr * V = receiver temperature (K), Tc = case temperature (K),Kr = efficiency coefficient (K/µV).

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

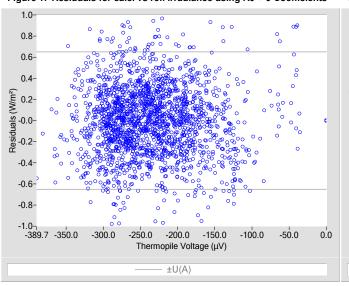


Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

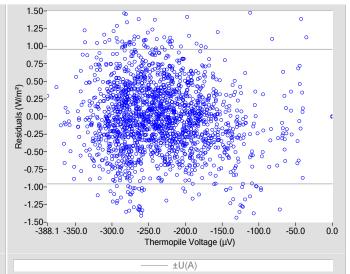
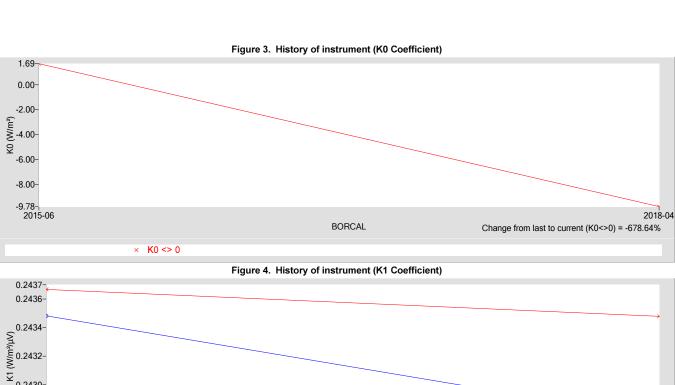


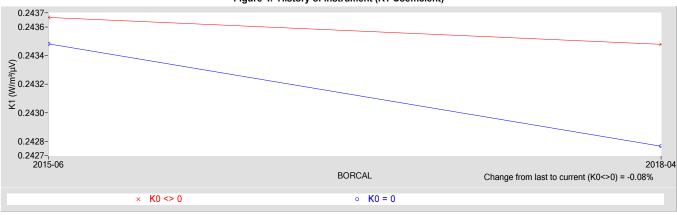
Table 2. Calibration Coefficients for K0<>0

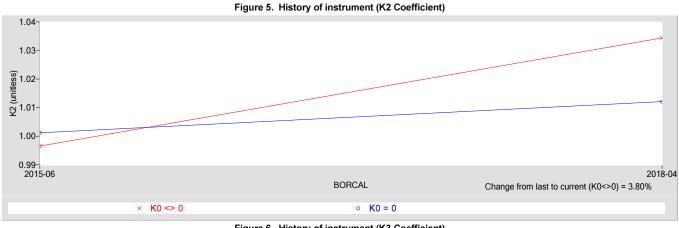
К0	-9.8
K1	0.24348
K2	1.0344
К3	-3.03
Kr used to derive coefficients	7.044e-4

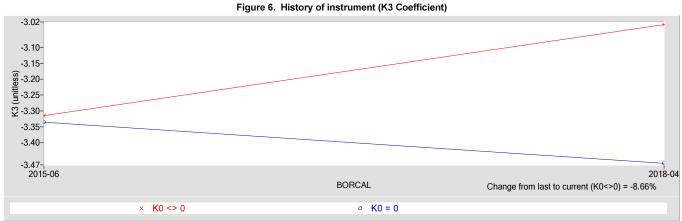
Table 3. Calibration Coefficients for K0=0

K 0	0.0
K 1	0.24277
K2	1.0121
K 3	-3.47
Kr used to derive coefficients	7.044e-4


Table 4. Uncertainty using K0<>0 Coefficients


Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.33
Combined Standard Uncertainty, u(c) (W/m²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.9


Table 5. Uncertainty using K0=0 Coefficients


Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.49
Combined Standard Uncertainty, u(c) (W/m²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.0

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30836F3 Eppley PIR Page 2 of 4

References:

[1] Reda, I.; Stoffel, T. (2010). Pyrgeometer Calibration for DOE-Atmospheric System Research Program using NREL Method (Presentation). 9 pp.; NREL Report No. PR-3B0-47756; http://www.nrel.gov/docs/fy10osti/47756.pdf.

BORCAL-LW 2018-04 / Certificate Southern Great Plains 30836F3 Eppley PIR Page 3 of 4 A1-31

Southern Great Plains Radiometer Calibration Facility National Renewable Energy Laboratory

Metrology Laboratory Calibration Certificate

Downwelling Pyrgeometer (Ventilated) **Test Instrument:** Manufacturer: **Eppley** Model: Serial Number: 36367F3

8/10/2018 Due Date:

Customer: SGP **Environmental Conditions:** see page 4

Test Dates: 6/6-15, 6/18-23, 6/26-30, 7/1-31, 8/1-10

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/19/2018	01/19/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30835F3	05/08/2017	05/08/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31637F3	06/27/2017	06/27/2019

‡ Through the World Infrared Standard Group (WISG)

8/10/2019

Number of pages of certificate:

Calibration Date:

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for

horizontal measurements, with their signal connectors oriented north, if their design permits.

Mike Dooraghi and Craig Webb Calibrated by:

> Michael Dooraghi, Technical Manager Date

For questions or comments, please contact the technical manager at:

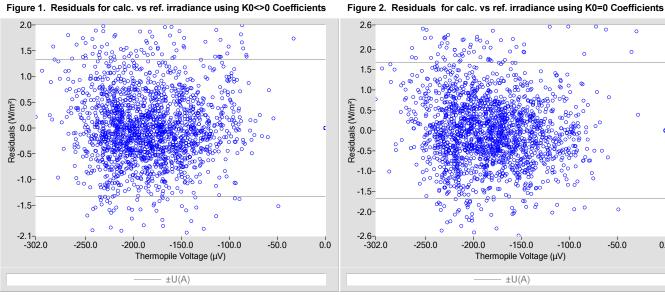
Mike.Dooraghi@nrel.gov; 303-384-6329; 15013 Denver West Parkway, Golden, CO 80401, USA

BORCAL-LW 2018-04 / Certificate Southern Great Plains 36367F3 Eppley PIR Page 1 of 4

Calibration Results

36367F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:


$$Win = K0 + K1*V + K2*Wr + K3*(Wd - Wr)$$
 [1]

where,

K0,K1,K2,K3 = calibration coefficeints, = thermopile output voltage (µV), $Wd = \sigma * Td^4 = \text{dome irradiance (W/m}^2),$ where, Td = dome temperature (K),

 $Wr = \sigma * Tr^4 = receiver irradiance (W/m^2),$ where, $\sigma = 5.6704e-8 \text{ W} \cdot \text{m}-2 \cdot \text{K}-4$, Tr = Tc + Kr * V = receiver temperature (K),Tc = case temperature (K), Kr = efficiency coefficient (K/ μ V).

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

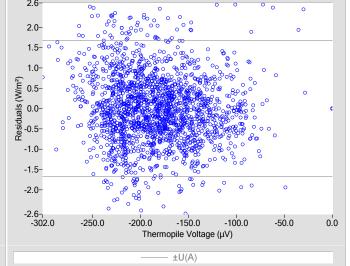


Table 2. Calibration Coefficients for K0<>0

К0	-13.1
K1	0.31171
K2	1.0427
К3	1.04
Kr used to derive coefficients	7.044e-4

Table 3. Calibration Coefficients for K0=0

K 0	0.0
K 1	0.31122
K2	1.0132
K 3	1.01
Kr used to derive coefficients	7.044e-4

Table 4. Uncertainty using K0<>0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.68
Combined Standard Uncertainty, u(c) (W/m²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.1

Table 5. Uncertainty using K0=0 Coefficients

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.86
Combined Standard Uncertainty, u(c) (W/m²)	±1.7
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.3

BORCAL-LW 2018-04 / Certificate Southern Great Plains 36367F3 Eppley PIR Page 2 of 4

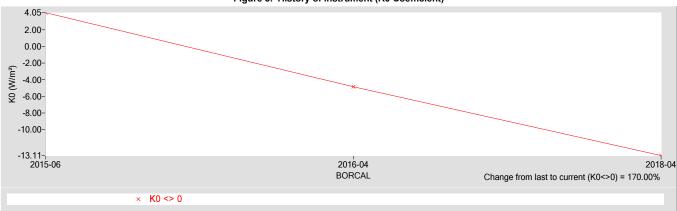


Figure 4. History of instrument (K1 Coefficient)

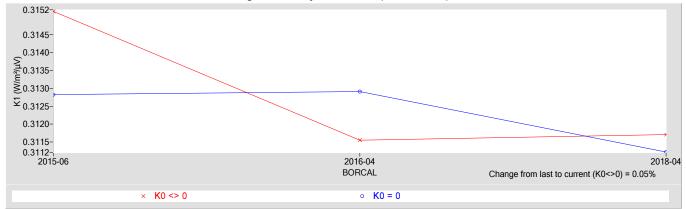


Figure 5. History of instrument (K2 Coefficient)

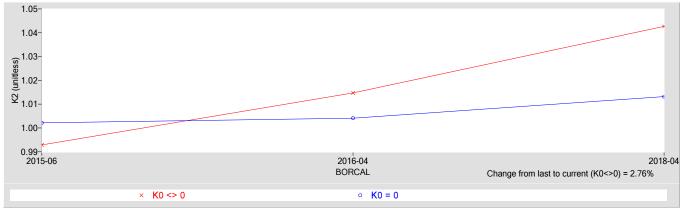
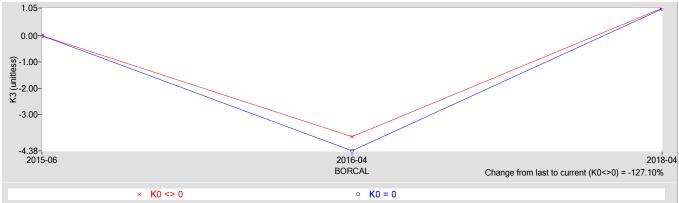



Figure 6. History of instrument (K3 Coefficient)

References:

[1] Reda, I.; Stoffel, T. (2010). Pyrgeometer Calibration for DOE-Atmospheric System Research Program using NREL Method (Presentation). 9 pp.; NREL Report No. PR-3B0-47756; http://www.nrel.gov/docs/fy10osti/47756.pdf.

BORCAL-LW 2018-04 / Certificate Southern Great Plains 36367F3 Eppley PIR Page 3 of 4

Southern Great Plains Radiometer Calibration Facility National Renewable Energy Laboratory

Metrology Laboratory Calibration Certificate

Downwelling Pyrgeometer (Ventilated) **Test Instrument:** Manufacturer: **Eppley** Model: Serial Number: 36368F3

8/10/2018 Due Date:

Customer: SGP **Environmental Conditions:** see page 4

Test Dates: 6/6-15, 6/18-23, 6/26-30, 7/1-31, 8/1-10

This certifies that the above product was calibrated in compliance with procedure listed below. Measurement uncertainties at the time of calibration are consistent with the Guide to the Expression of Uncertainty in Measurement (GUM) using Reda et al., 2008. All nominal values are traceable to the World Infrared Standard Group (WISG).

No statement of compliance with specifications is made or implied on this certificate. However, the estimated uncertainties are the uncertainties of the calibration process; users must add other uncertainties that are relevant to their measuring system, environmental and sky conditions, outdoor set-up, and site location.

This certificate applies only to the item identified above and shall not be reproduced other that in full, without specific written approval from the calibration facility. Certificate without signature is not valid.

Table 1. Traceability

Measurement Type	Instrument	Calibration Date	Calibration Due Date
Data Acquisition	NREL Data Acquisition System Model RAP-DAQ, S/N 2014-1302	01/19/2018	01/19/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 30835F3	05/08/2017	05/08/2019
Infrared Irradiance ‡	Eppley Downwelling Pyrgeometer Model PIR, S/N 31637F3	06/27/2017	06/27/2019

‡ Through the World Infrared Standard Group (WISG)

8/10/2019

Number of pages of certificate:

Calibration Date:

Calibration Procedure: SGP BORCAL-LW Calibration Procedure

Setup: Radiometers are calibrated outdoors, using the atmosphere as the source. Pyranometers and pyrgeometers are installed for

horizontal measurements, with their signal connectors oriented north, if their design permits.

Mike Dooraghi and Craig Webb Calibrated by:

> Michael Dooraghi, Technical Manager Date

For questions or comments, please contact the technical manager at:

Mike.Dooraghi@nrel.gov; 303-384-6329; 15013 Denver West Parkway, Golden, CO 80401, USA

BORCAL-LW 2018-04 / Certificate Southern Great Plains 36368F3 Eppley PIR Page 1 of 4

Calibration Results

36368F3 Eppley PIR

The incoming irradiance (Win, W/m²) of the test instrument during calibration is calculated using this Measurement Equation:

$$Win = K0 + K1*V + K2*Wr + K3*(Wd - Wr)$$
 [1]

where,

K0,K1,K2,K3 = calibration coefficeints, = thermopile output voltage (µV), $Wd = \sigma * Td^4 = \text{dome irradiance (W/m}^2),$

where, Td = dome temperature (K),

 $Wr = \sigma * Tr^4 = receiver irradiance (W/m^2),$ where, $\sigma = 5.6704e-8 \text{ W} \cdot \text{m}-2 \cdot \text{K}-4$, Tr = Tc + Kr * V = receiver temperature (K),Tc = case temperature (K), Kr = efficiency coefficient (K/ μ V).

Figure 1. Residuals for calc. vs ref. irradiance using K0<>0 Coefficients

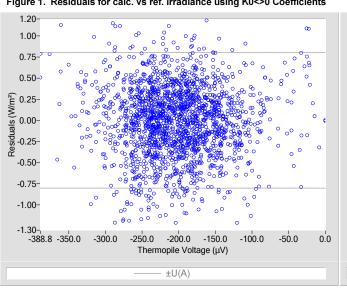


Figure 2. Residuals for calc. vs ref. irradiance using K0=0 Coefficients

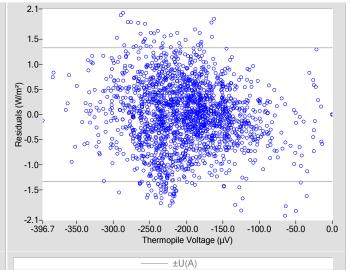
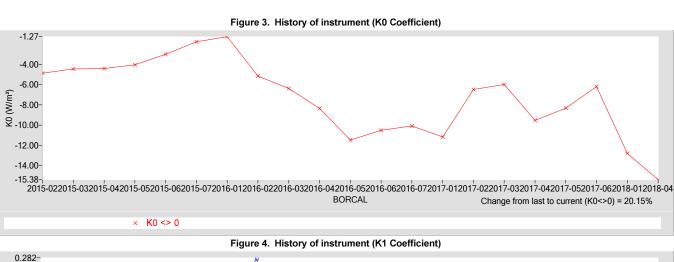


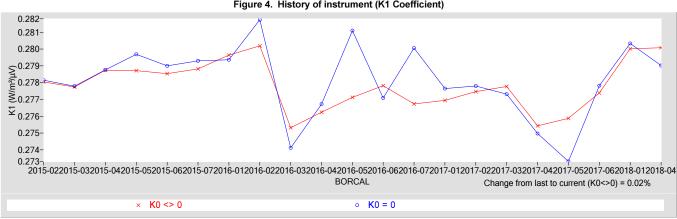
Table 2. Calibration Coefficients for K0<>0

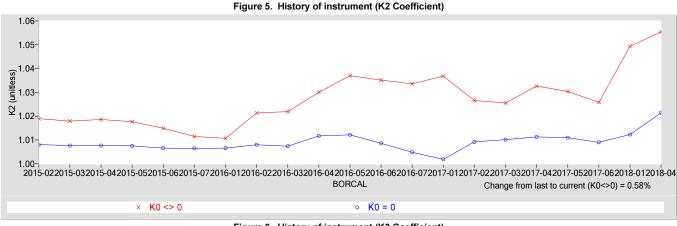
К0	-15.4
K1	0.28008
K2	1.0554
К3	-3.65
Kr used to derive coefficients	7.044e-4

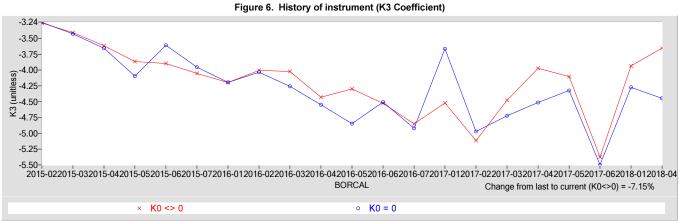
Table 3. Calibration Coefficients for K0=0

Κ0	0.0
K1	0.27902
K2	1.0214
К3	-4.45
Kr used to derive coefficients	7.044e-4


Table 4. Uncertainty using K0<>0 Coefficients


Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.41
Combined Standard Uncertainty, u(c) (W/m²)	±1.5
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±2.9


Table 5. Uncertainty using K0=0 Coefficients

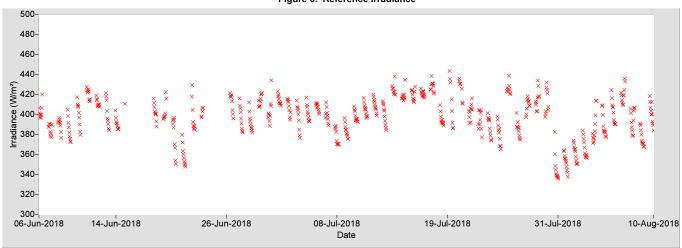

Type-B Standard Uncertainty, u(B) (W/m²)	±1.4
Type-A Standard Uncertainty, u(A) (W/m²)	±0.68
Combined Standard Uncertainty, u(c) (W/m²)	±1.6
Effective degrees of freedom, DF(c)	+Inf
Coverage factor, k	1.96
Expanded Uncertainty, U95 (W/m²)	±3.1

BORCAL-LW 2018-04 / Certificate Southern Great Plains 36368F3 Eppley PIR Page 2 of 4

References:

[1] Reda, I.; Stoffel, T. (2010). Pyrgeometer Calibration for DOE-Atmospheric System Research Program using NREL Method (Presentation). 9 pp.; NREL Report No. PR-3B0-47756; http://www.nrel.gov/docs/fy10osti/47756.pdf.

BORCAL-LW 2018-04 / Certificate Southern Great Plains 36368F3 Eppley PIR Page 3 of 4
A1-37


Environmental and Sky Conditions for BORCAL-LW 2018-04

Calibration Facility: Southern Great Plains

Latitude: 36.605°N Longitude: 97.488°W Elevation: 317.0 meters AMSL Time Zone: -6.0

Reference Irradiance (hourly averages):

Figure 6. Reference Irradiance

Meteorological Observations (hourly averages):

Figure 7. Temperature

40 35-0 30-15-10-06-Jun 14-Jun 26-Jun 08-Jul 19-Jul 31-Jul 10-Aug Date

Figure 8. Humidity

90

80

70

40

06-Jun 14-Jun 26-Jun 08-Jul 19-Jul 31-Jul 10-Aug
Date

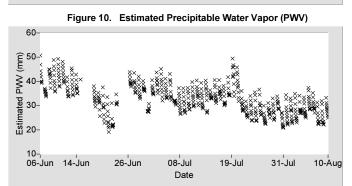


Table 6. Meteorological Observations

Observations	Mean	Min	Max
Temperature (°C)	24.64	15.90	33.12
Humidity (%)	63.31	47.44	86.14
Pressure (mBar)	N/A	N/A	N/A
Est. Precipitable Water Vapor (mm)	32.8	18.7	52.5

For other information about the calibration facility visit: http://www.arm.gov/docs/sites/sgp/sgp.html

Appendix 2 BORCAL Notes

Instrument, Configuration, and Session Notes for the BORCAL

BORCAL-LW 2018-04 / Full Report A2-1

BORCAL Notes

Facility: Southern Great Plains

Commants.

Avg. Station Pressure and Temperature is for Tulsa, OK, which is used for the Solar Position Algorithm (SPA).

Session; Numbers: 10,16

Comments:

RCC: Recovered Session

BORCAL-LW 2018-04 / Full Report A2-2

Appendix 3 Session Configuration Audit Report

Latest Session Configuration Audit Report for the BORCAL

BORCAL-LW 2018-04 / Full Report A3-1

BORCAL/LW 2018-04 Session Configuration Audit Report

LOCATION—									
Facility	Facility Abbrev.	Contact	Latitude	Longitude	Elevation (m)	Avg press (mbr)	Avg temp (C)	Time zone	ISO
Southern Great Plains	SGP	Craig Webb	36.605	-97.488	317.0	992.0	15.0	-6.0	

	SYSTEM—		METEOROLOGICAL INSTRUMENTS
## Serror Thresholds	Analysis Rejection Threshold 1 (Blue) 3.000 Threshold 2 (Green) 4.000 Threshold 3 (Brown) 5.000 No. of Std. Dev. 3 Clock Reset Interval (m) 0 Warning Threshold (s) 0 Delta UT1 0.100	Scan Rate (s) 300 Uncert. Significant Figures 2 Auto Mode Zenith Angle Afternoon Startup 94 Morning Shutdown 94 Solar Position Algorithm Delta T (s) 69.084 Atmos. Refraction (deg) 0.5667	Channel Junction Box Cable Location

Logger/Relay				Communications										
Unit 0	2014-1302 NREL RAP-DAQ			SG42000596 Agilent 34420A				Unit	Туре	Addr.	Board	Parity	Stop	Data
Unit 0	None					DMM	0	GPIB	1	0	0	0	0	
Unit 0	Unit 0 None				None			0	GPIB	4	1	0	0	0
Unit 0	nit 0 None None							-1		0	0	0	0	0
								-1		0	0	0	0	0
			Unit 0	Unit 0	Unit 0	Unit 0		-1		0	0	0	0	0
		Cal Date	01/19/2018					- 4			_	_		
		Cal Due Date	01/19/2019				1	-1		0	0	0	0	0
Svstem		Volts DC (μV)		0.00	0.00	0.00	ī	-1		0	0	0	0	0
		Res. (mOhms)		0.00	0.00	0.00		-1		0	0	0	0	0
		Res. (mOhms)		0.00	0.00	0.00								

BORCAL/LW 2018-04 Session Configuration Audit Report

				P`	YRGEOME	ETER REFEI	RENCE IN	ISTRUMI	ENTS =				
				Calibration	n Coefficie	nts	Uncert.	Max Out					
Cal Date	Cal Due Date	K0	K1	K2	K3	Kr	(W/m^2)	(mV)	Channel	Junction Box	Cable	Location	Active
Pyrgeomet	er 1: 30835F3	Eppley P	IR (Ventila	ited)									
05/08/2017	05/08/2019	-6.30900	0.23009	1.02060	-3.46670	7.04400E-4	1.80	9	5		2	T5-2	
Pyrgeometer 1: Case 10K Temperature									4		2		
Pyrgeomete	r 1: Dome 10K T	emperature							6		2		
Pyrgeomet	er 2: 31637F3	Eppley P	IR (Ventila	ited)									
06/27/2017	06/27/2019	-19.35800	0.24987	1.06090	-3.43960	7.04400E-4	3.00	9	17		2	T6-2	V
Pyrgeomete	r 2: Case 10K Te	mperature							16		2		
Pyrgeomete	r 2: Dome 10K T	emperature							18		2		

BORCAL/LW 2018-04 Session Configuration Audit Report

INSTRUMENTS

Serial Number / Model	Customer	Mfg RS	Ch	Box	Cable	Act	ISO	AIM	Stickr	Vent	Use	Kr	Location	Due
29146F3	SGP	3.6900	29		2	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T7-2	12
PIR	(Case 10K Temperature)		28		2									
	(Dome 10K Temperature)		30		2									
29591F3	SGP	4.1900	45		3	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T8-3	12
PIR	(Case 10K Temperature)		44		3									
	(Dome 10K Temperature)		46		3									
30011F3	SGP	3.5900	37		1	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T8-1	12
PIR	(Case 10K Temperature)		36		1									
	(Dome 10K Temperature)		38		1									
30013F3	SGP	3.5700	9		3	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T5-3	12
PIR	(Case 10K Temperature)		8		3									
	(Dome 10K Temperature)		10		3									
30132F3 ‡	SGP	3.9000	53		2	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T9-2	12
PIR	(Case 10K Temperature)		52		2									
	(Dome 10K Temperature)		54		2									
30344F3	SGP	3.9600	57		3	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T9-3	12
PIR	(Case 10K Temperature)		56		3									
	(Dome 10K Temperature)		58		3									
30358F3	SGP	4.2600	49		1	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T9-1	12
PIR	(Case 10K Temperature)		48		1									
	(Dome 10K Temperature)		50		1									
30782F3	SGP	4.0500	21		3	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T6-3	12
PIR	(Case 10K Temperature)		20		3									
	(Dome 10K Temperature)		22		3									
30834F3	SGP	3.7500	33		3	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T7-3	12
PIR	(Case 10K Temperature)		32		3									
	(Dome 10K Temperature)		34		3									
30836F3	SGP	3.9300	13		1	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T6-1	12
PIR	(Case 10K Temperature)		12		1									
	(Dome 10K Temperature)		14		1									
36367F3	SGP	3.0300	25		1	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T7-1	12
PIR	(Case 10K Temperature)		24		1									
	(Dome 10K Temperature)		26		1									
36368F3 ‡	SGP	3.0200	41		2	Yes	No	Yes	K0=0	Yes	PYG	7.044e-4	T8-2	12
PIR	(Case 10K Temperature)		40		2									
	(Dome 10K Temperature)		42		2									

[‡] Control Instrument